Natural bitumen (NB) is a highly precious material and has drawn increasing attention due to its unique properties, especially since it is available in large quantities and has been used in limited fields. In this research, the exploitation of NB from sulfur springs as an alternative energy resource in the production of asphalt pavement is evaluated. It can be concluded from the experimental results that the chemical composition and surface morphology of NB samples are different from those of base asphalt. Besides, the rheological properties of virgin NB are not sufficient for paving work. To overcome this obstacle, NB from five different springs is modified with limestone filler (LSF) to enhance its properties. LSF is a natural material and is available locally at a low price, usually used as filler material in control asphalt mixtures. The study outcomes reveal that LSF is an effective material and plays a fundamental role in improving the properties of NB since it enhances the resistance against temperature susceptibility and improves the ability of NB to disperse in asphalt mixture. Furthermore, treated NB with LSF boosts the mechanical characteristics, increases the stiffness, and strengthens the resistance against water damage for NB mixtures. Particularly, this research clarified that high Marshall stability is achieved with a treated Al-Mamora sulfur spring-NB mixture, which is 30.4% higher than that of the control mixture. At the same time, the treated Al-Askaree sulfur spring-NB mixture has a stiffness index and tensile strength ratio more than the control mixture by 45% and 3.36%, respectively. In conclusion, adding LSF to NB that is extracted from sulfur springs can produce a new type of asphalt binder more suitable for use in road pavement.
The solution casting method was used to prepare a polyvinylpyrrolidone (PVP)/Multi-walled carbon nanotubes (MWCNTs) nanocomposite with Graphene (Gr). Field Effect Scanning Electron Microscope (FESEM) and Fourier Transformer Infrared (FTIR) were used to characterize the surface morphology and optical properties of samples. FESEM images revealed a uniform distribution of graphene within the PVP-MWCNT nanocomposite. The FTIR spectra confirmed the nanocomposite information is successful with apperaring the presence of primary distinct peaks belonging to vibration groups that describe the prepared samples.. Furthermore, found that the DC electrical conductivity of the prepared nanocomposites increases with increasing MWCNT concentratio
... Show MoreThere is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
Abstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreIn this work, pure and doped Vanadium Pentoxide (V2O5) thin films with different concentration of TiO2 (0, 0.1, 0.3, 0.5) wt were obtained using Pulse laser deposition technique on amorphous glass substrate with thickness of (250)nm. The morphological, UV-Visible and Fourier Transform Infrared Spectroscopy (FT-IR) were studied. TiO2 doping into V2O5 matrix revealed an interesting morphological change from an array of high density pure V2O5 nanorods (~140 nm) to granular structure in TiO2-doped V2O5 thin film .Transform Infrared Spectro
... Show MoreThe preparation of a new Azo compounds of highly conjugated dimeric and polymeric liquid crystal to achieve the crystalline characteristics Which have structures assigned based on elemental analysis, IR 1HNMR and CHNS-O while mesogenic properties have been set for DSC and hot-stage polarizing optical microscopy. The compounds show enantiotropicnematic phase being displayed. The compounds show photoluminescence properties in the organic solution at room temperature, with the fluorescence band centered around 400 nm.
The assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been und
... Show More