As a star explode as a supernova its ejecta will directly interact with relativelylow density interstellar medium with high shock wave velocity, and due to thisinteraction many of forbidden emission lines will give a raise from both theexcitation and ionization of the atom in the region. So, the study of these emissionlines can reveal many physical properties of the region, in this case the remnant ofthe supernova, such as temperature, density, composition, and many other importantphysical processes. In this paper the optical spectrum of the young galacticsupernova remnant which is the Crab Nebula has used, in order to calculate it’selectron temperature (Te) and electron density (ne) by using the [OIII] and [SII]forbidden lines. From the obtained results it’s found that, the remnant has Te reach to17,000 500°K that raises from high shock velocity according to the intensity ratioof which is found to be , although the remnant has suchhigh Te and high shock velocity it’s found that, only about 64% of pre-shock heliumis fully pre-ionized in the remnant. In addition to that when the intensity ratio ofboth [ ] and [SII] lines has taken it’s found that, the remnant is an intermediatedensity remnant which has ne equal to 1300 10 cm-3
The Plerion nebula is characterized by its pulsar that fills the center of the supernova remnant with radio and X-ray frequencies. In our galaxy there are nine naked plerionic systems known, of which the Crab Nebula is the best-known example. It has been studied this instance in order to investigate how the pulsar energy affect on the distribution and evolution of the remnant as well as study the pulsar kick velocity and its influence on the remnant. From the obtained results it's found that, the pulsar of the Crab Nebula injects about (2−3)𝑥 1047 erg of energy to the remnant, although this energy is small compared to the supernova explosion energy which is about 1051 erg but still plays a significant role in the distribution and the m
... Show MoreSupernova explosions are described as very violent events which transfer a significant amount of energy to interstellar media and are responsible for a large variety of physical processes. This study does not discuss the actual explosion mechanisms but follows the behavior of the dynamical evolution of some selected type I and type II supernova remnant and particularly after a thousand years from their explosion and shows how the density of the medium affects the evolution and the lifetime of each remnant. By studying such behaviors, a simplified model has been proposed here for the velocity and radius of the remnant after thousand years of explosion that depends only on the density of the medium and age of the remnant. It has been found th
... Show MoreRadio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreRadio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreCrabs belong to the crustacean family (Decapods crustacean), and their shells contain natural ingredients from which the bioactive compounds are derived. It has been used as folklore medicine in cancer treatment. We investigate the possible anti-inflammatory and anti-oxidant effects for crab shells and whole crabs. Thirty-six rats (150–200 gm) from both sexes were used, divided into six groups, the anti-inflammatory and anti-oxidant activity measured using cotton pellet induce granuloma model. Detection of tumor necrosis factor alpha (TNF α), Interleukin 1 beta (IL-1β), superoxide (SOD), and malondialdehyde (MDA) levels using ELISA Kits. The data analysis by one-way ANOVA followed by the Tukey test. Values are significant at (p < 0.05).
... Show MoreForbidden Suckling Decision in Islamic jurisprudence
Fe, Co and Sb nanopowders were fruitfully prepared by electrical wire explosion method in Double distilled and de-ionized water (DDDW) media. The formation of iron, cobalt and antimony (FeCoSb) alloy nanopowder was monitored by X-ray diffraction. The x-ray diffraction pattern indicates that there are iron, cobalt and antimony peaks. Optical properties of this alloy nanoparticles were characterized by UV-Visible absorption spectra. The absorption peak position is shifted to the lower wavelengths when the current increases. That means the mean size of the nanoparticles controlled by changing the magnitude of the current. The surface morphological analysis is carried out by employing Scanning Electron Microscope (SEM). Particles with varies
... Show MoreIn this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).