As a star explode as a supernova its ejecta will directly interact with relativelylow density interstellar medium with high shock wave velocity, and due to thisinteraction many of forbidden emission lines will give a raise from both theexcitation and ionization of the atom in the region. So, the study of these emissionlines can reveal many physical properties of the region, in this case the remnant ofthe supernova, such as temperature, density, composition, and many other importantphysical processes. In this paper the optical spectrum of the young galacticsupernova remnant which is the Crab Nebula has used, in order to calculate it’selectron temperature (Te) and electron density (ne) by using the [OIII] and [SII]forbidden lines. From the obtained results it’s found that, the remnant has Te reach to17,000 500°K that raises from high shock velocity according to the intensity ratioof which is found to be , although the remnant has suchhigh Te and high shock velocity it’s found that, only about 64% of pre-shock heliumis fully pre-ionized in the remnant. In addition to that when the intensity ratio ofboth [ ] and [SII] lines has taken it’s found that, the remnant is an intermediatedensity remnant which has ne equal to 1300 10 cm-3
Crab shells were used to produce chitosan via the three stages of deproteinization, demineralization and deacetylation using sodium hydroxide and hydrochloric acid under different treatment conditions of temperature and time. The produced chitosan was characterized using Fourier transform infrared spectroscopy (FTIRS), X-ray diffraction (XRD), high – resolution scanning electron microscopy (HRSEM), electron dispersion spectroscopy (EDS), dynamic light scattering (DLS), Brunauer Emmett Teller (BET) and Thermogravimetric analysis (TGA). The adsorption behavior of chitosan to remove arsenic (As) and copper (Cu) from electroplating wastewater was examined by batch adsorption process as a function of adsorbent dose, contact time and te
... Show MoreElectronic properties including (bond length, energy gap, HOMO, LUMO and density of state) as well as spectroscopic properties such like infrared, Raman scattering, force constant, reduced mass and longitu- dinal optical mode as a function of frequency are based on size and concentration of the molecular and nanostructures of aluminum nitride ALN, boron nitride BN and AlxB7-XN7 as nanotubes has calculated using Ab –initio approximation method dependent on density functional theory and generalized gradient approximation. The geometrical structure are calculated by using Gauss view 05 as a complementary program. Shows the energy gap of ALN, BN and AlxB7-XN7 as a function of the total number of atoms , start from smallest molecule to reached
... Show MoreIn this work the parameters of plasma (electron temperature Te,
electron density ne, electron velocity and ion velocity) have been
studied by using the spectrometer that collect the spectrum of
plasma. Two cathodes were used (Si:Si) P-type and deposited on
glass. In this research argon gas has been used at various values of
pressures (0.5, 0.4, 0.3, and 0.2 torr) with constant deposition time
4 hrs. The results of electron temperature were (31596.19, 31099.77,
26020.14 and 25372.64) kelvin, and electron density (7.60*1016,
8.16*1016, 6.82*1016 and 7.11*1016) m-3. Optical properties of Si
were determined through the optical transmission method using
ultraviolet visible spectrophotometer with in the range
(
In this work, plasma parameters such as electron density (ne), electron temperature (Te), Debye length (λD), plasma frequency (fPlasma), and Debye number (ND) for Cu plasma produced by Pin-Plate DC discharge were studied. Spectroscopic technique was used to analyze and determine spectral emission lines. The value of the electron density for Cu was in the range (1.5–3.5)×1018cm-3 and for the electron temperature was in the range ( 1.31 – 1.61)eV. Finally, plasma parameters of Cu were caculated through plasma produced by Pin-Plate DC discharge using different voltages (600-900) V.
This study includes analytical methods for the determination of the drug amoxicillin trihydrate (Amox.) in some pharmaceutical preparations using Cobalt ion (Co(II)) as complexing metal. The best conditions for complexation were: the reaction time was 20 minutes, pH=1.5 and the best temperature of reaction was 70 ËšC. Benzyl alcohol was the best solvent for extraction the complex.
Keywords: Amoxicillin, Cobalt(II), Complex, Molar ratio.
Pt (IV) complexes were synthesized from 4-Aminoantipyrine (4-AAP) as a primary ligand, and sodium pyrophosphate as a secondary ligand using metal: ligand in (1:1) mole ratio with molecular formula [Pt (4-AAP)Cl4],[Pt (4-AAP)(Pyph)Cl2]. These complexes were characterized by elemental microanalysis (C.H.N), (A.A), [I.R, (U.V–Vis), mass spectroscopy], along with molar conductivity, chloride contents and melting point measurements. The ligands (4-AAP) and (Pyph) gave octahedral geometry with Pt (IV) rapid, simple, sensitive and validated spectrophotometric method has been described for the determination of platinum (IV) using 4-aminoantipyrine. The complex product was quantitatively measured at 385nm and the reaction conditions were studie
... Show MoreThe efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show More