Cloud computing offers a new way of service provision by rearranging various resources over the Internet. The most important and popular cloud service is data storage. In order to preserve the privacy of data holders, data are often stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for big data storage and processing in the cloud. Traditional deduplication schemes cannot work on encrypted data. Among these data, digital videos are fairly huge in terms of storage cost and size; and techniques that can help the legal aspects of video owner such as copyright protection and reducing the cloud storage cost and size are always desired. This paper focuses on video copyright protection and deduplication. A video copyright and deduplication scheme in cloud storage environments using the H.264 compression algorithm and SHA-512 hashing technique is proposed. This paper proposes a combined copyright production and deduplication based on video content to authenticate and to verify the integrity of the compressed H.264 video. The design of the proposed scheme consists of two modules. First, a H.264 compression algorithm is applied on the given video by the user. Second, a unique signature in different time interval of the compressed video is generated by the user in such a way that the CSP can use it to compare the user’s video against other videos without compromising the security of the user’s video. To avoid any attacker to gain access to the hash signature during uploading to the cloud, the hash signature is encrypted with the user password. Some experimental results are provided, showing the effectiveness of our proposed copyright protection and deduplication system.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
That corruption with all its forms, has prevailed over the whole world, but with different degrees relaying on the one who leads these countries of rulers, followers and officials who have been deemed the main reason for that corruption, but if these rulers were righteous, These countries would have blessed and elevated and were corrupt unjust tyrants who were the disaster that befell the chiefs of those countries with ruin, misery, and backwardness. This is what we sought to prove and clarify by considering the verses of the Holy Qur’an in respect with this topic. The research includes an introduction, two topics, and a conclusion.
 
... Show MoreResearch summary
This research discloses the study of the methodology of one of the notables of the followers, which is: (Abi Mijlis Al-Basri), who had a clear impact on many commentators after him, especially in the field of interpretation by impact. This study included two topics:
The first: his biography and scientific
The second: his methodology in the traditional interpretation.
Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreWar as a human phenomenon, has its own literature. Poetry is a major genre in this literature. This paper is an attempt to investigate and analyse some stylistic features in two selected, English and Arabic, war poems. These poems share the same theme.Both promote the principle of sacrificing one’s own life for the sake of homeland. This paper limits itself to analyse, thecontent words, tenses, semantic grouping of vocabulary and foregrounding in the two poems. The areas of analysis show great similarities in distributing the general content words (nouns, verbs, adjectives, and adverbs). In the analysis of the semantic areas of each content word, these poems reveal some similarities and some differences in their frequency rates.
... Show MoreA study of the singlet and triplet states of two electron systems in the first excited state was performed using a simple quantum mechanical model, which assigns the 1s,and 2s orbital with two different variational parameters. Our results agree with a high level calculation used by Snow and Bills.
To maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show MoreAudio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to
... Show More