Preferred Language
Articles
/
SRbkFIcBVTCNdQwChTWj
Highly-Pure Nanostructured Metal Oxide Multilayer Structure Prepared by DC Reactive Magnetron Sputtering Technique

In this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering technique when metal oxide multilayer structures are prepared.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Oct 15 2015
Journal Name
Journal Of Physical Vapor Deposition Science And Technology (jpvdst)
Physical Properties of Nanostructured Silicon Dioxide Prepared by Pulsed-Laser Deposition

Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Structural and Optical Properties of Cobalt-Doped Zinc Oxide Thin Films Prepared By Spray Pyrolysis Technique

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 08 2023
Journal Name
Journal Of Wasit For Science And Medicine
Study on physical properties of nanostructured ZnO prepared by pulse laser deposition

Zinc Oxide thin film of 2 μm thickness has been grown on glass substrate by pulsed laser deposition technique at substrate temperature of 500 oC under the vacuum pressure of 8×10-2 mbar. The optical properties concerning the absorption, and transmission spectra were studied for the prepared thin film. From the transmission spectra, the optical gap and linear refractive index of the ZnO thin film was determined. The structure of the ZnO thin film was tested with X-Ray diffraction and it was formed to be a polycrystalline with many peaks.

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Control the deposition uniformity using ring cathode by DC discharge technique

Simulation of direct current (DC) discharge plasma using
COMSOL Multiphysics software were used to study the uniformity
of deposition on anode from DC discharge sputtering using ring and
disc cathodes, then applied it experimentally to make comparison
between film thickness distribution with simulation results. Both
simulation and experimental results shows that the deposition using
copper ring cathode is more uniformity than disc cathode

View Publication Preview PDF
Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Laser wavelength and energy effect on optical and structure properties for nano titanium oxide prepared by pulsed laser deposit

Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Diagnostics of dusty plasma properties in planar magnetron sputtering device

The effect of Al dust particles on glow discharge regions, discharge
voltage, discharge current, plasma potential, floating potential,
electron density and electron temperature in planar magnetron
sputtering device has been studied experimentally. Four cylindrical
Langmuir probes were employed to measure plasma parameters at
different point on the radial axis of plasma column. The results
shows the present of Al dust causes to increase the discharge voltage
and reduce the discharge current. There are two electron groups in
the present and absent of Al dust particles. The radial profiles of
plasma parameters in the present of dust are non- uniform. The
floating potential of probe becomes more negatively while

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Optical and Structural Properties of SnO2 Thin Films Prepared by Sputtering Method

SnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
 

View Publication Preview PDF
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
The axial profile of plasma characteristics of cylindrical magnetron sputtering device

In the present work, a d.c. magnetron sputtering system was designed and fabricated. The chamber of this system was includes from two copper coaxial cylinders where the inner one used as a cathode (target) while the outer one used as the anode with Solenoid magnetic coil located on the outer cylinder (anode). The axial profile of magnetic field for various coil current (from 2A to 14 A) are shown. The plasma characteristics in the normal glow discharge region are diagnostics by the 2.2mm diameter Langmuir probe with different length along the cathode and located at different radial positions 1cm and 2cm from the cathode surface. The result of this work shows that, the electron energy distributions at different radial positions along the

... Show More
View Publication Preview PDF
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Investigation of plasma characteristics of center region of post cylindrical magnetron sputtering device

A d.c. magnetron sputtering system was designed and fabricated. The chamber of this system is consisted from two copper coaxial cylinders. The inner one used as the cathode and the outer one used as anode with magnetic coil located on the outer cylinder (anode). The axial behavior of the magnetic field strength along the cathode surface for various coil current (from 2A to 14A) are shown. The results of this work are investigated by three cylindrical Langmuir probes that have different diameters that are 2.2mm, 1mm, and 0.45mm. The results of these probes show that, there are two Maxwellian electron groups appear in the central region. As well as, the density of electron and ion decreases with increases of magnetic field strengths.

View Publication Preview PDF
Publication Date
Wed May 01 2019
Journal Name
Iraqi Journal Of Science
Investigation of nanostructured and gas sensing of tin dioxide films prepared by oxidation of Sn