In the current study, the researchers have been obtained Bayes estimators for the shape and scale parameters of Gamma distribution under the precautionary loss function, assuming the priors, represented by Gamma and Exponential priors for the shape and scale parameters respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation.
Based on Monte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s). The results show that, the performance of Bayes estimator under precautionary loss function with Gamma and Exponential priors is better than other estimates in all cases.
Background: Malignant lymphoma is the generic term given to tumors of the lymphoid system and specifically of lymphocytes and their precursor cells, While all lymphomas are malignant neoplasms, there is a wide spectrum of clinical behavior, with some following an indolent clinical course and others behaving in an aggressive manner (will causing death in a short time frame if left untreated). The metastatic process involves intravasation and extravasation of tumor cells, followed by reimplantation of tumor cells, formation of a new tumor stoma, Degradation of the extracellular matrix and components of the basement membrane by proteases facilitates the detachment of tumor cells, their crossing of tissue boundaries, and invasion into adjacent
... Show MoreDiagnostic X-ray is one of the ionizing radiation that plays an important role in medical examination. Despite its great benefit, it is considered the largest source of artificial radiation exposure to public. The aim of the study is to measure the entrance surface dose (ESD) of patients undergoing chest, lumber spine and knee X-ray examination using TLD-100. The mean Entrance surface dose of chest (PA), lumber spine (AP, LAT) and knee (AP, LAT) are 1.3mGy, 8.57mGy, 21.5mGy and 0.49mGy, 0.48mGy respectively. The ESDs measured were found to be higher than the published work.
In this work, we give an identity that leads to establishing the operator . Also, we introduce the polynomials . In addition, we provide Operator proof for the generating function with its extension and the Rogers formula for . The generating function with its extension and the Rogers formula for the bivariate Rogers-Szegö polynomials are deduced. The Rogers formula for allows to obtain the inverse linearization formula for , which allows to deduce the inverse linearization formula for . A solution to a q-difference equation is introduced and the solution is expressed in terms of the operators . The q-difference method is used to recover an identity of the operator and the generating function for the polynomials
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreMethods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and
... Show MoreWith the wide developments of computer applications and networks, the security of information has high attention in our common fields of life. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is widely accepted due to its strong encryption, and complex processing as well as its resistance to brute force attack. The proposed modifications are implemented by encryption and decryption Rijndael
... Show MoreWith the wide developments of computer science and applications of networks, the security of information must be increased and make it more complex. The most important issues is how to control and prevent unauthorized access to secure information, therefore this paper presents a combination of two efficient encryption algorithms to satisfy the purpose of information security by adding a new level of encryption in Rijndael-AES algorithm. This paper presents a proposed Rijndael encryption and decryption process with NTRU algorithm, Rijndael algorithm is important because of its strong encryption. The proposed updates are represented by encryption and decryption Rijndael S-Box using NTRU algorithm. These modifications enhance the degree of
... Show MoreBackground:
Neuroimaging is a description, whether in two-dimensions (2D) or three-dimensions (3D), of the structure and functions of the brain. Neuroimaging provides a valuable diagnostic tool, in which a limited approach is used to create images of the focal sensory system by medicine professionals. For the clinical diagnosis of patients with Alzheimer's Disease (AD) or Mild Cognitive Impairs (MCI), the accurate identification of patients from normal control persons (NCs) is critical. Recently, numerous researches have been undertaken on the identification of AD based on neuroimaging data, including images with radiographs and algorithms for master learning. In the previous decade, these techniques were also used slowly to differentiate AD a
... Show More