The enhancement of ZnSe/Si Heterojunction by adding some elements (V, In and Cu) as impurities is the main goal because they contribute to the manufacturing of renewable energy equipment, such as solar cells. This paper describes the preparation of thin films ZnSe with V, In and Cu doped using thermal evaporation method with a vacuum of 10–5 Torr. The thin film was obtained from this work could be applied in heterojunction solar cell because of several advantages including high absorption coefficient value and direct band gap. The samples prepared on a glass and n-type Si wafer substrate. These films have been annealed for 1 h in 450 K. X-ray diffraction XRD results indicated that ZnSe thin film possesses poly-crystalline structure after doping with preferential orientation (111) and the atomic force microscopy (AFM) were used to examine the surface morphology. Optical studies were done using UV-Visible spectroscopy and the band gap energy was found to decrease with doping. Hall measurements showed that all the films are p-type with high carriers concentration (3.26 × 1017 cm–3) in ZnSe:Cu thin film. The built in potential was determined from the C-V measurements which revealed an abrupt junction for all heterojunction samples. The conversion efficiency calculated from dark and illuminated I-V characteristics of ZnSe/Si solar cell pure and doping. The chances for achieve type of doping can be improved by designing growth conditions that destabilise the formation of compensating centres, which is important for optical device applications, the effect of doping on main different factors such as open-circuit voltage, short-circuit current density, fill factor, the photovoltaic conversion efficiency of ZnSe pure and doped. The results reveal high efficiency for ZnSe:Cu heterojunction solar cell.
An improved Metal Solar Wall (MSW) with integrated thermal energy storage is presented in this research. The proposed MSW makes use of two, combined, enhanced heat transfer methods. One of the methods is characterized by filling the tested ducts with a commercially available copper Wired Inserts (WI), while the other one uses dimpled or sinusoidal shaped duct walls instead of plane walls. Ducts having square or semi-circular cross sectional areas are tested in this work.
A developed numerical model for simulating the transported thermal energy in MSW is solved by finite difference method. The model is described by system of three governing energy equations. An experimental test rig has been built and six new duct configurations have b
Background: Obesity is an evolving major health problem in both developed and developing countries. Traditional obesity indices as body mass index, waist circumference, waist-hip-ratio are well known measures to identify obese subjects, however, neck circumference as an index of upper-body obesity was found to be a simple and time-saving screening measure that can be used to identify obesity and the likelihood of developing metabolic syndrome in type 2 diabetic patients.
Aim: to investigate the relationship of neck circumference (NC) to obesity and metabolic syndrome in Iraqi subjects with type 2 diabetes.
Methods: The study group included 90 type 2 diabetic subjects (48 men and 42 women) aged 30-68 years. The subjects were those w
Diabetes mellitus is a global problem nowadays due to increase the disease cases all over the world, in both the developed and developing countries which may affect the quality of life (QOL ) of diabetic patients. This study was conducted to assess the quality of life of patients with type 2 diabetes mellitus (DM) and to determine some selected clinical and sociodemographic factors that affect the quality of life of these patients in Al Hila city-Iraq. This was a cross sectional study in which 100 patients with type 2 diabetes mellitus attending diabetic outpatient clinics of Merjan Teaching Hospital-Al Hila. To assess the quality of life of those diabetic patients, the World Health Organizations Quality of Life Assessment (WHOQOL) was a
... Show MoreThis work describes the effect of temperature on the phase transformation of titanium dioxide (TiO2) prepared using metal organic precursors as starting materials. X-ray diffraction (XRD) was used to investigate the structural properties of TiO2 gels calcined at different temperatures (300, 500, 700) ?C. the results showed that the samples have typical peaks of TiO2 polycrystalline brookite nanopowders after calcined at (300 ?C), which confirmed by (111), (121), (200), (012), (131), (220), (040), (231), (132) and (232) diffraction peaks. Also, XRD diffraction spectra showed the presence of crystallites of anatase with low proportion of rutile phase where calcined at (500 ?C), while rutile phase domains at (700 ?C). The crystallite size of
... Show MoreThe problem of soil contamination is increased recently due to increasing the industrial wastes such as petroleum hydrocarbon, organic solvents, and heavy metals as well as maximizing the use of agricultural fertilizers. During this period, wide development of data collection methods, using remote sensing techniques in the field of soil and environment applications appear and state the suitable technique for remediation. This study deals with the application of remote sensing techniques in geoenvironmental engineering through a field spectral reflectance measurements at nine spots of naturally hydrocarbons contaminated soil in Al-Daura Refinery Company site which is located to the south west of Baghdad using radiometer device to get stan
... Show Moreسمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010
Ab – initio density function theory (DFT) calculations coupled with Large Unit Cell (LUC) method were carried out to evaluate the electronic structure properties of III-V zinc blend (GaAs). The nano – scale that have dimension (1.56-2.04)nm. The Gaussian 03 computational packages has been employed through out this study to compute the electronic properties include lattice constant, energy gap, valence and conduction band width, total energy, cohesive energy and density of state etc. Results show that the total energy and energy gap are decreasing with increase the size of nano crystal . Results revealed that electronic properties converge to some limit as the size of LUC increase .
This study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed