The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The control, the virtual stability of every subsystem and the stability of the entire robotic system are proved in this work. Then the computational complexity of the FAT is compared with the regressor-based approach. Despite the apparent advantage of the FAT in avoiding the regressor matrix, its computational complexity can result in difficulties in the implementation because of the representation of the dynamic matrices of the link subsystem by two large sparse matrices. In effect, the FAT-based adaptive VDC requires further work for improving the representation of the dynamic matrices of the target subsystem. Two case studies are simulated by Matlab/Simulink: a 2-R manipulator and a 6-DOF planar biped robot for verification purposes.
This paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreFuzzy C-means (FCM) is a clustering method used for collecting similar data elements within the group according to specific measurements. Tabu is a heuristic algorithm. In this paper, Probabilistic Tabu Search for FCM implemented to find a global clustering based on the minimum value of the Fuzzy objective function. The experiments designed for different networks, and cluster’s number the results show the best performance based on the comparison that is done between the values of the objective function in the case of using standard FCM and Tabu-FCM, for the average of ten runs.
In this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreThe increase in cloud computing services and the large-scale construction of data centers led to excessive power consumption. Datacenters contain a large number of servers where the major power consumption takes place. An efficient virtual machine placement algorithm is substantial to attain energy consumption minimization and improve resource utilization through reducing the number of operating servers. In this paper, an enhanced discrete particle swarm optimization (EDPSO) is proposed. The enhancement of the discrete PSO algorithm is achieved through modifying the velocity update equation to bound the resultant particles and ensuring feasibility. Furthermore, EDPSO is assisted by two heuristic algorithms random first fit (RFF) a
... Show MoreAdvertising design is one of the arts of communication of various levels and one of the aspects of the fields of design arts, and that the construction of the design environment in the advertising is one of the important entry points in making the recipient feel this environment and feel as if being one of its elements. It is an entrance worthy of study and research and is a problem worth raising according to the following question: - What is the effectiveness achieved in the virtual design environment for digital advertising? The two researchers dealt with the research in three frameworks, the methodological framework which identified (the problem of research, its importance, purpose, limits, and the definition of ter
... Show MoreThe research (Virtual Reality Technology and its Uses in Industrial Product Design) is interested in the virtual reality technology used in the industrial product design and consequently knowing the functions achieved in the industrial product according to the data of that technology which participates in activating the mental and imaginary image of the user which show the parameters of the technical transformation of that product. The terms used in the research have been defined to guide the reader. The second chapter, the theoretical framework consisted of three sections the first is concerned with technology in the industrial design. The second is concerned with the virtual environment and the virtual reality. The thirds chapter consi
... Show MoreThis paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreImportance of Arabic language stemming algorithm is not less than that of other languages stemming in Information Retrieval (IR) field. Lots of algorithms for finding the Arabic root are available and they are mainly categorized under two approaches which are light (stem)-based approach and root-based approach. The latter approach is somehow better than the first approach. A new root-based stemmer is proposed and its performance is compared with Khoja stemmer which is the most efficient root-based stemmers. The accuracy ratio of the proposed stemmer is (99.7) with a difference (1.9) with Khoja stemmer.
Clustering algorithms have recently gained attention in the related literature since
they can help current intrusion detection systems in several aspects. This paper
proposes genetic algorithm (GA) based clustering, serving to distinguish patterns
incoming from network traffic packets into normal and attack. Two GA based
clustering models for solving intrusion detection problem are introduced. The first
model coined as handles numeric features of the network packet, whereas
the second one coined as concerns all features of the network packet.
Moreover, a new mutation operator directed for binary and symbolic features is
proposed. The basic concept of proposed mutation operator depends on the most
frequent value