This work deals with kinetics and chemical equilibrium studies of esterification reaction of ethanol with acetic acid. The esterification reaction was catalyzed by an acidic ion exchange resin (Amberlyst- 15) using a batch stirred tank reactor. The pseudo-homogenous and Eley-Rideal models were successfully fitted with experimental data. At first, Eley-Rideal model was examined for heterogeneous esterification of acetic acid and ethanol. The pseudo-homogenous model was investigated with a power-law model. The apparent reaction order was determined to be (0.88) for Ethanol and (0.92) for acetic acid with a correlation coefficient (R2) of 0.981 and 0.988, respectively. The reaction order was determined to be 4.1087x10-3 L0.8/(mol0.8.min) with R2 of 0.954. The adsorption constants of acetic acid and ethanol were calculated as 0.023 and 0.044 L/mol, respectively and the lumped reaction constant were determined to be 5*10-4 L2/gcat.mol.min. The results of the reaction kinetic study show that the high acetic acid/ethanol molar ratio was favored. The maximum conversion of 70 % was obtained at 70°C for acetic acid/ethanol molar ratio of 4.
The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current dens
... Show MoreThe deterioration of buried sewers during their lifetime can be affected by several factors leading to bad performance and can damage the infrastructure similar to other engineering structures. The Hydraulic deterioration of the buried sewers caused by sewer blockages while the structural deterioration caused by sewer collapses due to sewer specifications and the surrounding soil characteristics and the groundwater level. The main objective of this research is to develop deterioration models, which are used to predict changes in sewer condition that can provide assessment tools for determining the serviceability of sewer networks in Baghdad city. Two deterioration models were developed and tested using statistical software SPSS, the
... Show MoreThe thermal degradation of cable ties of polyamide (PA6,6) neat and UV stabilized was investigated by thermogravimetry (TG) and its derivative (DTG) at several heating rates between 5 and 80 oC min-1 in helium atmosphere. High heating rates signal novel peaks in the DTG curves that indicate melting temperature of PA6,6. The kinetic parameters calculated via isoconversion and nonisothermal data using the Flynn-Wall-Ozawa, Kissinger and CoatsRedfern methods showed comparable activation energy values. Exposure of the ties to outdoor environment causes pre-mature stress cracking and brittle failure due to prevalence of crosslinking reaction occurring in the polymer chains
This study aims to remove Cd(II) ions from simulated wastewater by using Chlorophyceae algae (CA). Different parameters were studied to show their effects on the biosorption efficiency of CA. These parameters are: the effect of pH 3-7, initial metal ion concentration 20-200 mg/L, sorbent dos-age 0.05-2 g/L, contact time 5-180 min, and agitation speed 100-300 rpm. We found that both the Langmuir and Freundlich models appropriate for characterizing the metal removal process. The biosorption data fit best with the results of the pseudo-second-order kinetic model, demonstrating that the chemisorption process is the dominant mechanism controlling the removal. CA was char-acterized using the scanning electron microscopy test, prior to and post bi
... Show MoreIn this study terpolymer resin ) p-ABBF) was prepared by condensation of (p-amino benzoic acid) and (Biuret) with formaldehyde in (1:1:3) mol ratio using hydrolic acid as a reaction medium at 130±2 ℃ .The synthesized terpolymer resin was characterized by elemental analysis , FT-IR and (1H-NMR) spectroscopy. The intrinsic viscosity was determined. The thermal stability of the terpolymer was analyzed by (TGA and DSC).The morphological feature of the (p-ABBF) terpolymer resin was studied by scanning electron microscopy (SEM).Bach equilibrium method was employed to study analytical efficiency of the terpolymer resin towards certain trivalent and divalent metal ions such as (Cu+2,Ni+2, Co+2,Zn+2,Cd+2 and Cr+3( where thes
... Show MoreThe esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
Phenol condensed with β-keto esters via Pechmann condensation to form derivatives of Coumarin in various reaction conditions by two ways. Present paper is comparative study of synthesis Coumarin with the yield of product , reaction time and reaction conditions.