An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
In this paper, various aspects of smart grids are described. These aspects include the components of smart grids, the detailed functions of the smart energy meters within the smart grids and their effects on increasing the awareness, the advantages and disadvantages of smart grids, and the requirements of utilizing smart grids. To put some light on the difference between smart grids and traditional utility grids, some aspects of the traditional utility grids are covered in this paper as well.
Present research is aimed knowing of smart thinking for secondary schools' students. and discover statistically significant differences in Smart Thinking due to the couple variables of (Gender – Branch)
For the purpose of verification of the aims of the research, the researcher has prepared a smart thinking scale, the scale has been applied on sample of secondary schools' students for both Branches (Scientific & Literary One).It was contingent (500) student male and female were chosen stratified random method.
After data analyze the reached results: The Preparatory fourth grade students have smart thinking. Female smart thinking enjoy a much higher degree than males. and Scientific branch students enjoy thinking and much high
Back ground: Zygote produce from once a sperm fertilizes an egg cell. Then, the zygote (unicellular) will begin chain of cellular cleavages to produce multicellular mass, its embryo, the differentiated to different tissues and organism. The development of the embryo is called embryogenesis. Coenzyme Q10, is an antioxidant produced in the body. It boosts cellular energy and may enhance the immune system. CoQ10 is present and measurable in seminal fluid, the concentration of CoQ10 directly correlates with both sperm count and motility. It is beneficial in the prevention and treatment a wide range of health problems. Objectives: The present study was aimed to investigate the possibility of using coenzyme Q10 to improve in vitro fertilization (
... Show MoreThis research is a case study to solve control problems in Al Rasheed edible oil factory fire tube boilers. they have hopes to develop a new control system to manage boilers operation. The suggestion is to use Zelio soft programmable relays instead of the unavailable old control units. Operation philosophy was studied through works of literature, operation manuals, and standards. Programmable logic control relay is proposed as an advanced selection than PLC's. Boilers operation is accompanied by operation risks. many boilers were exploded in Iraq for different reasons. Some problems are attributed to manual operation mistakes. Extensive work was done to understand the operation sequence, emergency shutdown, and faults causing the trips. A c
... Show MoreShort Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Ato
... Show More