Preferred Language
Articles
/
SIa7RYYBIXToZYALYYEY
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.

Scopus Clarivate Crossref
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Construction of Graduation Certificate Issuing System Based on Digital Signature Technique
...Show More Authors

With the development of computer architecture and its technologies in recent years, applications like e-commerce, e-government, e-governance and e-finance are widely used, and they act as active research areas. In addition, in order to increase the quality and quantity of the ordinary everyday transactions, it is desired to migrate from the paper-based environment to a digital-based computerized environment. Such migration increases efficiency, saves time, eliminates paperwork, increases safety and reduces the cost in an organization. Digital signatures are playing an essential role in many electronic and automatic based systems and facilitate this migration. The digital signatures are used to provide many services and s

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Engineering
An Electronic and Web-Based Authentication, Identification, and Logging Management System
...Show More Authors

The need for participants’ performance assessments in academia and industry has been a growing concern. It has attendance, among other metrics, is a key factor in engendering a holistic approach to decision-making. For institutions or organizations where managing people is an important yet challenging task, attendance tracking and management could be employed to improve this seemingly time-consuming process while keeping an accurate attendance record. The manual/quasi-analog approach of taking attendance in some institutions could be unreliable and inefficient, leading to inaccurate computation of attendance rates and data loss. This work, therefore, proposes a system that employs embedded technology and a biometric/ w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Severity Based Light-Weight Encryption Model for Secure Medical Information System
...Show More Authors

View Publication
Scopus (20)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Mon Oct 31 2022
Journal Name
Ingénierie Des Systèmes D Information
Iraqi Paradigm E-Voting System Based on Hyperledger Fabric Blockchain Platform
...Show More Authors

Voting is one of the most fundamental components of a democratic society. In 2021 Iraq held the Council of Representatives (CoR) elections in 83 electoral constituencies in 19 governorates. Nonetheless, several significant issues arose during this election, including the problem of logistics distribution, the excessively long period of ballot counting, voters can't know if their votes were counted or if their ballots were tampered with, and the inconsistent regulation of vote counting. Blockchain technology, which was just invented, may offer a solution to these problems. This paper introduces an electronic voting system for the Iraq Council of Representatives elections that is based on a prototype of the permission hyperledger fabr

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Prediction of the Scale Removal Rate in Heat Exchanger Piping System Using the Analogies between Mass and Momentum Transfer
...Show More Authors

The possibility of predicting the mass transfer controlled CaCO3 scale removal   rate has been investigated.

Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.

Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .

View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FINITE ELEMENT METHOD FOR INCOMPRESSIBLE VISCOELASTIC MATERIALS
...Show More Authors

A numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 27 2019
Journal Name
Journal Of Nano Research
A Specific NH<sub>3</sub> Gas Sensor of a Thick MWCNTs-OH Network for Detection at Room Temperature
...Show More Authors

NH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi

... Show More
View Publication
Scopus (18)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref