Recently, increasing material prices coupled with more acute environmental awareness and the implementation of regulation has driven a strong movement toward the adoption of sustainable construction technology. In the pavement industry, using low temperature asphalt mixes and recycled concrete aggregate are viewed as effective engineering solutions to address the challenges posed by climate change and sustainable development. However, to date, no research has investigated these two factors simultaneously for pavement material. This paper reports on initial work which attempts to address this shortcoming. At first, a novel treatment method is used to improve the quality of recycled concrete coarse aggregates. Thereafter, the treated recycled aggregates were used in warm mix asphalt at varied rates to replace virgin raw coarse aggregates. The asphalt concrete mixes produced were tested for modulus, tensile strength, permanent deformation, moisture susceptibility and fatigue life. The comparison of these properties with that of the mixes using the same rates of untreated course aggregates from the same source has demonstrated the effectiveness of the new technology. Lastly, the cost, material and energy saving implications are discussed.
In this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t
... Show MoreVarious simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreThe effect of electrolysis operating parameters on the removal efficiency of cadmium from a simulated wastewater was studied by adopting response surface methodology combined with Box–Behnken Design. As a new electrode design, spiral-wound woven wire mesh rotating cylinder electrode was used for cadmium removal. Current (240–400 mA), rotation speed (200–1000 rpm), initial cadmium concentration (200–600ppm), and cathode mesh number (30–60) were chosen as independent variables while the removal efficiency of cadmium was considered as a response function. The results revealed that the rotation speed has the major effect on the removal efficiency of cadmium. Regression analysis showed good fit of the experimental data to the second-or
... Show MoreThis work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet tem
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 containing 7.5% CNT was 179.54 m2/g, and the pore volume was 0.31
... Show MoreAlPO4 catalysts supported with WO3 were prepared by impregnating the catalysts with ammonium metatungstate. The catalysts were checked by X-ray Diffraction (XRD), AFM, and SEM; also, the catalysts analysis was done by X-Ray (EDX). Finally, the N2 adsorption-desorption was used to measure the pore volume and surface area of the catalyst. The prepared catalyst has a surface area of 185.83 m2/g, pore volume of 0.645 cm3/g at a calcination temperature of 500°C for 3 hrs, and particle size of AlPO4 with an average of 35.36 nm. Transesterification of edible oil using WO3/AlPO4 was performed, it was observed that WO3/AlPO4 catalysts give high conversion of edible oil, and this is attributed to the high surface area, smaller particle size, and the
... Show MoreThis paper proposes a new approach, of Clustering Ultrasound images using the Hybrid Filter (CUHF) to determine the gender of the fetus in the early stages. The possible advantage of CUHF, a better result can be achieved when fuzzy c-mean FCM returns incorrect clusters. The proposed approach is conducted in two steps. Firstly, a preprocessing step to decrease the noise presented in ultrasound images by applying the filters: Local Binary Pattern (LBP), median, median and discrete wavelet (DWT), (median, DWT & LBP) and (median & Laplacian) ML. Secondly, implementing Fuzzy C-Mean (FCM) for clustering the resulted images from the first step. Amongst those filters, Median & Lap
To show the impact of 790-805 nm diode laser irradiations on wound healing as a supplementary treatment in women underwent episiotomies, and to assess the laser parameters that were used .Material and methods: Eighteen female patients were included in this study; all of them underwent mediolateral episiotomy. Ten patients received laser therapy- diode laser (K Laser) (790-805) nm in CW mode of operation (and eight patients were the control group. Spot size of 8mm, time for exposure for each spot was 30 seconds. The power used was 0.6 W .The power density for each spot of treatment was 1.19 W/cm2 per session (non contact mode of application of laser therapy).The group studied received 2 sessions of laser radiation, day 4, and day 8 after
... Show More