Abstract. Shock chlorination is a well-known practice in swimming pools and domestic wells. One of the limitations for using this technique in drinking water purification facilities is the difficulty of quickly removing high chlorine concentrations in water distribution systems or production facilities. In order to use this method in the drinking water industry a shock de-chlorination method should be introduced for producing microorganism and biocide free water. De-chlorination using natural stagnant aeration (leaving the water to lose the chlorine naturally) is the safest known method if compared with chemical and charcoaling methods. Unfortunately, stagnant aeration is a slow process. Therefore, developing a process for accelerating de-chlorination by aeration would pave the way for using shock de-chlorination in drinking water industry. Forced air bubbling is a possible technique for de-chlorination but there is lack of data supporting such a process. The theory is that air bubbling has the advantages of higher mass transfer area, higher Reynolds number across the bubble water interface, and higher mass transfer concentration gradient as the bubbling presents a continuous stream of fresh bubbles. All of these factors accelerate aeration to various extents. A 20 cm diameter, 1-meter height column provided with air sparger was designed to collect the desired data used in this study. Trichloroisocyanuric acid, sodium hypochlorite and chlorine gas were the three familiar sources of chlorine used to investigate their response to air bubbling. Chlorine gas was the fastest and safest chlorine source to be dechlorinated. It dropped from 200 ppm to 0.02 ppm within 4 minutes or zero ppm within 6 minutes using an air flowrate of 9 l/min. Sodium hypochlorite decreased from 200 ppm to 0.02 ppm within 6 minutes using air flowrate of 9 l/min. Trichloroisocyanuric acid found to be the chlorine source slowest to respond to de-chlorination. It decreased from 200 ppm to 0.02 ppm within 8 minutes using an air flowrate of 9 l/min. Shock de-chlorination by aeration is found to be a promising method that opens up the drinking water industry and could produce microorganism and biocide free drinking water.
One of the goals of adding adjuvants to agricultural spray solutions is to enhance the droplet size characteristics of this spray. Droplet size, in turn, has an influence in the deposited spray quality, in addition to the drift and losses of spray to off-target places. The aim of this research was to evaluate the effect of adding adjuvants to two types of water from different sources on the droplet size characteristics. Two types of adjuvants were employed in the tests: the active substance content of the first adjuvant was a 50% aqueous solution of sodium salt of alkylbenzenesulfonic acid—10% (HY), whereas the second was from rapeseed oil (natural origin)—85% (OL). Both adjuvants were tested in two concentrations: the first was
... Show MoreThis study was carried out to study effect of magnetic water ( M0 and M) and different concentrations of coconut extract in Fragaria x ananassa (Duch) C.V Festival. The results showed significant differences in the plants treated with magnetic water ( 0.12 Tesla) and different concentrations of coconut extract C1 (0%), C2 (2.5%), C3 (5%), C4 (7.5%) and C5 (10%) in vegetative parameters as in leaf area and chlorophyll in treatment M0C3 was (53.72 Dcm2, 50.00), respectively, highest leaf number and plant dry weight in MC4 (12.77,14.22 gm), respectively. Results recorded significant differences in fruit parameters such as weight in MC1 (18.97 gm). The maximum fruit number was in MC3 (110), the greatest fruit size was in MC4 (15.78 cm3) and the
... Show MoreIn this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show MoreExploration activities of the oil and gas industry generate loads of formation water called produced water (PW) up to thousands of tons each day. Depending on the geographic area, formation depth, oil production techniques, and age of oil supply wells, PW from different oil fields contain different chemical compositions. Currently, PW is also known as industrial waste water containing heavy metals that are toxic to humans and the environment, requiring special processing so that they can be disposed of in the environment. To determine the heavy metals content in PW from the Al-Ahdab oil field (AOF), the Ministry of Science and Technology/Agricultural Research Department determined som
Excessive intake of fluoride, mainly through drinking water is a serious health hazard affecting humans worldwide. In this study, the defluoridation capacities of locally available raw waste beef bones have been estimated. Several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existence of anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal effeciency up to 99.7% at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the ps
... Show MoreGroundwater quality deterioration due to anthropogenic natural activities and its immense utilization in various sectors is considered a great concern. The aim of this study is to determine the groundwater quality parameters at various sources in and around Dhaka city and compare them with Bangladesh drinking water standards. In this study, six groundwater quality parameters (pH, DO, COD, TS, TDS, and arsenic) and ten groundwater samples are analyzed to determine the water quality. The collected samples have maximum and minimum pH values of 6.9 and 6.4, respectively. Maximum and minimum DO values are 0.3 and 0.1 mg/L, respectively. The arsenic concentration is 0 mg/L for all collected groundwater samples. The maximum and minimum COD
... Show MoreDue to severe scouring, many bridges failed worldwide. Therefore, the safety of the existing bridge (after contrition) mainly depends on the continuous monitoring of local scour at the substructure. However, the bridge's safety before construction mainly depends on the consideration of local scour estimation at the bridge substructure. Estimating the local scour at the bridge piers is usually done using the available formulae. Almost all the formulae used in estimating local scour at the bridge piers were derived from laboratory data. It is essential to test the performance of proposed local scour formulae using field data. In this study, the performance of selected bridge scours estimation formulae was validated and sta
... Show MoreNanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show MoreTo reduce the effects of discharging heated water disposed into a river flow by a single thermal source, two parameters were changed to get the minimum effect using optimization. The first parameter is to distribute the total flow of the heated water between two disposal points (double source) instead of one and the second is to change the distance between these two points. In order to achieve the solution, a two dimensional numerical model was developed to simulate and predict the changes in temperature distribution in the river due to disposal of the heated water using these two points of disposal.
MATLAB-7 software was used to build a program that could solve the governing partial equations of thermal pollution in rivers by using t
The increasing drinking water demand in many countries leads to an increase in the use of desalination plants, which are considered a great solution for water treatment processes. Reverse osmosis (RO) and electro-dialysis (ED) systems are the most popular membrane processes used to desalinate water at high salinity. Both systems work by separating the ionic contaminates and disposing of them as a brine solution, but ED uses electrical current as a driving force while RO uses osmotic pressure. A direct comparison of reverse osmosis and electro-dialysis systems is needed to highlight process development similarities and variances. This work aims to provide an overview of previous studies on reverse osmosis and electro-dial
... Show More