Abstract. Shock chlorination is a well-known practice in swimming pools and domestic wells. One of the limitations for using this technique in drinking water purification facilities is the difficulty of quickly removing high chlorine concentrations in water distribution systems or production facilities. In order to use this method in the drinking water industry a shock de-chlorination method should be introduced for producing microorganism and biocide free water. De-chlorination using natural stagnant aeration (leaving the water to lose the chlorine naturally) is the safest known method if compared with chemical and charcoaling methods. Unfortunately, stagnant aeration is a slow process. Therefore, developing a process for accelerating de-chlorination by aeration would pave the way for using shock de-chlorination in drinking water industry. Forced air bubbling is a possible technique for de-chlorination but there is lack of data supporting such a process. The theory is that air bubbling has the advantages of higher mass transfer area, higher Reynolds number across the bubble water interface, and higher mass transfer concentration gradient as the bubbling presents a continuous stream of fresh bubbles. All of these factors accelerate aeration to various extents. A 20 cm diameter, 1-meter height column provided with air sparger was designed to collect the desired data used in this study. Trichloroisocyanuric acid, sodium hypochlorite and chlorine gas were the three familiar sources of chlorine used to investigate their response to air bubbling. Chlorine gas was the fastest and safest chlorine source to be dechlorinated. It dropped from 200 ppm to 0.02 ppm within 4 minutes or zero ppm within 6 minutes using an air flowrate of 9 l/min. Sodium hypochlorite decreased from 200 ppm to 0.02 ppm within 6 minutes using air flowrate of 9 l/min. Trichloroisocyanuric acid found to be the chlorine source slowest to respond to de-chlorination. It decreased from 200 ppm to 0.02 ppm within 8 minutes using an air flowrate of 9 l/min. Shock de-chlorination by aeration is found to be a promising method that opens up the drinking water industry and could produce microorganism and biocide free drinking water.
New evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreThin films of highly pure (99.999%) Tellurium was prepared by high vacuum technique (5*10-5torr), on glass substrates .Thin films have thickness 0.6m was evaporated by thermal evaporation technique. The film deposited was annealed for one hour in vacuum of (5*10-4torr) at 373 and 423 K. Structural and electrical properties of the films are studies. The x-ray diffraction of the film represents a poly-crystalline nature in room temperature and annealed film but all films having different grain sizes. The d.c. electrical properties have been studied at low and at relatively high temperatures and show that the conductivity decreases with increasing temperature at all range of temperature. Two types of conduction mechanisms were found to d
... Show MoreThis research presents the possibility of using banana peel (arising from agricultural production waste) as biosorbent for removal of copper from simulated aqueous solution. Batch sorption experiments were performed as a function of pH, sorbent dose, and contact time. The optimal pH value of Copper (II) removal by banana peel was 6. The amount of sorbed metal ions was calculated as 52.632 mg/g. Sorption kinetic data were tested using pseudo-first order, and pseudo-second order models. Kinetic studies showed that the sorption followed a pseudo second order reaction due to the high correlation coefficient and the agreement between the experimental and calculated values of qe. Thermodynamic parameters such as enthalpy change (ΔH
... Show MoreThis paper shews how to estimate the parameter of generalized exponential Rayleigh (GER) distribution by three estimation methods. The first one is maximum likelihood estimator method the second one is moment employing estimation method (MEM), the third one is rank set sampling estimator method (RSSEM)The simulation technique is used for all these estimation methods to find the parameters for generalized exponential Rayleigh distribution. Finally using the mean squares error criterion to compare between these estimation methods to find which of these methods are best to the others
The study deals with reactivity insertion linear and non linear and/or Ramp reactivity expressed as a polynomial in time in the presence of two Feedback mechanisms, using the neutronic-thermohydraulic coupling in order to predict the neutron behavior as a function of time in terms of reactor power. Also, a comparative study has been achieved in the case of the presence of the feedback mechanisms. Insertion of Ramp reactivities in terms of polynomial in time to study the behavior of power and reactivity as a function of time in the presence of two feedback mechanisms (fuel and coolant) has been carried out and the results are displayed as plots, and showed this results corresponding with international results. The present study shows t
... Show MoreLight isotopes, especially closed shell nuclei, have significance in thermonuclear reactions of the Carbon-Nitrogen-Oxygen (CNO) cycle in stars. In this research, 12C(p, γ) 13N and 14N(p, γ) 15O reactions have been calculated by means of Matlab codes to find the reaction rate across a temperature range of 0.006 to 10 GK using non-resonant parts, as well as the astrophysical S- factor S(E) at low energies. It was concluded that the high binding energy of 12C and 14N nuclei make the reaction less probable thus enabling other competitive processes to develop, which enhances the probability of other competitive proton reactions in the CNO cycle.
KE Sharquie, AA Noaimi, S Adnan, AM Al-Niddawi, WK Aljanabi, American Journal of Dermatology and Venereology, 2020 - Cited by 2