Fuzzy regression is considered one of the most important regression models, and recently the fuzzy regression model has become a powerful tool for conducting statistical operations, however, the above model also faces some problems and violations, including (when the data is skewed, or no-normal, .....) and thus leads to incorrect results, so it is necessary to find a model to deal with such violations and problems suffered by the regular fuzzy regression models and at the same time be more powerful and immune than the fuzzy regression model called the semi-parametric fuzzy quantile regression. This model is characterized by containing two parts, the first is the fuzzy parametric part (fuzzy inputs and crisp parameters) and the second is the fuzzy nonparametric part for fuzzy triangular numbers, and the semiparametric fuzzy quantile regression is estimated. To demonstrate the effectiveness of our combining model, we will utilize the following Akbari and Hesamian (2019) dataset that was used as a reference case study. Estimate Fuzzy Quantile Regression Model: (FQRM), Fuzzy semi-parametric quantile regression: (FSPQRM), Fuzzy Support Vector Machine: (FSVM), Combining FQRM-FSVR (Comb), Combining FSPQRM-FSVR. Using a new metric measure Jensen–Shannon Distance: (JS) based on fuzzy belonging functions. Two criteria MSM and G1 were used in comparison.
Information from 54 Magnetic Resonance Imaging (MRI) brain tumor images (27 benign and 27 malignant) were collected and subjected to multilayer perceptron artificial neural network available on the well know software of IBM SPSS 17 (Statistical Package for the Social Sciences). After many attempts, automatic architecture was decided to be adopted in this research work. Thirteen shape and statistical characteristics of images were considered. The neural network revealed an 89.1 % of correct classification for the training sample and 100 % of correct classification for the test sample. The normalized importance of the considered characteristics showed that kurtosis accounted for 100 % which means that this variable has a substantial effect
... Show MoreFlexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreArtificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network. The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je
... Show MoreThe improvement in Direction of Arrival (DOA) estimation when the received signals impinge on Active-Parasitic Antenna (APA) arrays will be studied in this work. An APA array consists of several active antennas; others are parasitic antennas. The responses to the received signals are measured at the loaded terminals of the active element. The terminals of the parasitic element are shorted. The effect of the received signals on the parasites, i.e., the induced short-circuit current, is mutually coupled to the active elements. Eigen decomposition of the covariance matrix of the measurements of the APA array generates a third subspace in addition to the traditional signal and noise subspaces generated by the all-active ante
... Show MoreIn this paper, we used the maximum likelihood estimation method to find the estimation values ​​for survival and hazard rate functions of the Exponential Rayleigh distribution based on a sample of the real data for lung cancer and stomach cancer obtained from the Iraqi Ministry of Health and Environment, Department of Medical City, Tumor Teaching Hospital, depending on patients' diagnosis records and number of days the patient remains in the hospital until his death.
In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
In this paper, an estimate has been made for parameters and the reliability function for Transmuted power function (TPF) distribution through using some estimation methods as proposed new technique for white, percentile, least square, weighted least square and modification moment methods. A simulation was used to generate random data that follow the (TPF) distribution on three experiments (E1 , E2 , E3) of the real values of the parameters, and with sample size (n=10,25,50 and 100) and iteration samples (N=1000), and taking reliability times (0< t < 0) . Comparisons have been made between the obtained results from the estimators using mean square error (MSE). The results showed the
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati
This work aims to introduce the concepts of left and right derivations in an AT-algebra and discuss some interesting theorems of these concepts. Also, a fuzzy derivation of an AT-subalgebra, a fuzzy right (left) derivation ideal, a fuzzy derivation of AT-subalgebra, and a fuzzy right (left) derivation ideal are studied. Finally, a level derivation of AT-algebras is defined and some propositions are achieved.