Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which were then sintered by heating the samples. The effects of adding strontium oxide were analyzed by utilizing measurements of the Brinell hardness, X-ray diffraction, porosity, diametral tensile strength, roughness, and wettability of the finished surfaces. The results show that adding more strontium oxide (gradually increasing the ratio from 2% SrO to a 6% addition) raised the roughness and porosity. However, the microhardness and diametral tensile strength were enhanced with an increase in the volume fraction of strontium oxide particles. In conclusion, the alloy that contained 6 wt% strontium oxide microparticles had reasonably high mechanical properties and might be regarded as suitable for use in dental and medical applications due to its high wettability or, in other words, its low contact angle. The Brinell testing results for the diametral tensile strength, microhardness, and porosity of the generated strontium oxide–cp titanium composite alloy demonstrate its high potential for usage as a biomaterial, particularly in dental applications.
The relation between the output power and wavelengths for a 532nm 3W frequency doubled diode pumped solid state laser pumped Ti:Sapphire crystal is investigated. A 20 femtosecond pulse at 800 nm is obtained. A 320 mW is found to be the highest power at 800nm. Below this wavelength value and above the power was found to deviate from highest output value.
In this study, the effects of blending the un-branched acrylate polymer known as Poly (n-decyl acrylate), and the branched acrylate polymer known as Poly (iso-octyl acrylate), on the viscosity index (VI), and the pour point of the Iraqi base stocks 40, and 60 respectively, were investigated. Toluene was used as a carrier solvent for both polymer types. The improvement level of oils (VI, & pour point) gained by blending the oil with the acrylate derived polymers was compared with the values of (VI, and pour point) gained by blending the oil with a commercial viscosity index, and pour point improver. The commercial lubricant additive was purchased and used by Al-Daura Refineries. It consisted of an un-known olefin copolymer dissolved i
... Show MoreThe aim of the present study is to examine the effectiveness of a proposed unite in voluntary work in enhancing critical thinking skills and the attitudes towards responsible citizenship among eighth grade female students in the Sultanate of Oman. In order to collect the study data, the researchers employed a quasi-experimental research design with twenty female students from Al-Sideeqah bint Al-Sideeq for basic education school. The research data were collected via a critical thinking test that consisted of twenty-five items and a scale of twenty items under three different dimensions, which aimed to measure students' attitudes towards responsible citizenship. The researchers implemented these two instruments as pre- and post the experi
... Show MoreBackground: Nickel-titanium (NiTi) archwires have become increasingly popular because of their ability to release constant light forces, which are especially useful during initial alignment and leveling phase. The aim of the present study was to investigate and compare the load–deflection characteristics of four commercially available NiTi archwires. Materials and methods: 200 NiTi 0.014, 0.016, 0.018, 0.016x0.022 and 0.019x0.025-inch nickel–titanium archwires from four different manufacturers (3M, Ortho Technology, Jiscop and Astar) were tested. The load-deflection properties of these archwires were evaluated by a full arch bending test in both palatal and gingival directionsat 37°C temperature using a universal material t
... Show MoreIN this work, a titanium dental implant was modified by electro-polymerized of 4-allyl-2-methoxyphenol (Eugenol) using direct current lower than 3.5 volt. The modification of titanium dental implant was achieved to improve its corrosion resistant. Fourier transform infrared spectroscopy (FTIR) was employed to confirm the electro-polymerization of Eugenol to Poly Eugenol (PE) on pure titanium. Deposition of PE on titanium was confirmed by X-ray diffraction and was characterized by thermogravimetric analysis (TGA). The surface morphology of polymeric film were examined through scanning electron microscopy (SEM). Coated titanium by (PE) revealed a good corrosion protection efficiency even at temperature ranged (293-323)K in artificial saliva.
... Show MoreCarbon dioxide (CO2) flooding is an EOR technique in which carbon dioxide is injected into the reservoir to improve the oil recovery. The reservoir oil and rock properties are altered when carbon dioxide interacts with the oil and rock present in the reservoir. Carbon dioxide injection alters the oil and rock properties by causing reduction in oil viscosity, oil swelling and wettability alteration of the rock. This paper will present a proposal to study the wettability alteration in carbonate formations during miscible carbon dioxide flooding. In miscible carbon dioxide flooding, the injection pressure of carbon dioxide would be kept above the minimum miscibility pressure. Thus carbon dioxide is miscible with the oil present in the reservoi
... Show MoreUsing photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show More