Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which were then sintered by heating the samples. The effects of adding strontium oxide were analyzed by utilizing measurements of the Brinell hardness, X-ray diffraction, porosity, diametral tensile strength, roughness, and wettability of the finished surfaces. The results show that adding more strontium oxide (gradually increasing the ratio from 2% SrO to a 6% addition) raised the roughness and porosity. However, the microhardness and diametral tensile strength were enhanced with an increase in the volume fraction of strontium oxide particles. In conclusion, the alloy that contained 6 wt% strontium oxide microparticles had reasonably high mechanical properties and might be regarded as suitable for use in dental and medical applications due to its high wettability or, in other words, its low contact angle. The Brinell testing results for the diametral tensile strength, microhardness, and porosity of the generated strontium oxide–cp titanium composite alloy demonstrate its high potential for usage as a biomaterial, particularly in dental applications.
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
In this work, the adsorption of reactive yellow dye (Remazol yellow FG dye) by granular activated carbon (GAC) was investigated using batch and continuous process. The batch process involved determination the equilibrium isotherm curve either favorable or unfavorable by estimation relation between adsorption capacity and concentration of dye at different dosage of activated carbon. The results were fitted with equilibrium isotherm models Langmuir and Freundlich models with R2value (>0.97). Batch Kinetic study showed good fitting with pseudo second order model with R2 (0.987) at contact time 5 h. which provesthat the adsorption is chemisorptions nature. Continuous study was done by fixed bed column where breakthrough time was increased
... Show MoreA low speed open circuit wind tunnel has been designed, manufactured and constructed at the
Mechanical Engineering Department at Baghdad University - College of Engineering. The work is one of
the pioneer projects adapted by the R & D Office at the Iraqi MOHESR. The present paper describes the
first part of the work; that is the design calculations, simulation and construction. It will be followed by a
second part that describes testing and calibration of the tunnel. The proposed wind tunnel has a test
section with cross sectional area of (0.7 x 0.7 m2) and length of (1.5 m). The maximum speed is about (70
m/s) with empty test section. The contraction ratio is (8.16). Three screens are used to minimize flow
distu
In this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experi
... Show MoreThis study investigates the implementation of Taguchi design in the estimation of minimum corrosion rate of mild-steel in cooling tower that uses saline solution of different concentration. The experiments were set on the basis of Taguchi’s L16 orthogonal array. The runs were carried out under different condition such as inlet concentration of saline solution, temperature, and flowrate. The Signal-to- Noise ratio and ANOVA analysis were used to define the impact of cooling tower working conditions on the corrosion rate. A regression had been modelled and optimized to identify the optimum level for the working parameters that had been founded to be 13%NaCl, 35ᴼC, and 1 l/min. Also a confirmation run to establish the p
... Show MoreThere is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP
... Show MoreIn present project, new Schiff base of 4, 4'- (((1E, 1'E)-1,4-.phenylenebis- (methane-ylylidene))-bis-(azane-ylylidene)) bis-(5-(4-chlorophenyl) -4H -1,2,4-triazole-3-thione) (L3) has been synthesized by condensation of 4-amino-5-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with benzene-1,4-dicarboxaldehyde. The new asymmetrical Schiff base (L3) used as a ligand to synthesize a new complex with Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) metal ions by 1:2 (Metal: ligand) ratio. New ligand and their complexes have been exanimated and Confirmed by Fourier-transform infrared (FT-IR), Ultraviolet-visible (UV-visible), Proton nuclear magnetic resonance (1HNMR), carbon13 nuclear magnetic resonance (13CNMR), carbon-hydrogen nitrogen sulf
... Show MoreBiodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show MoreNitrogen dioxide NO2 is one of the most dangerous contaminant in the air, its toxic gas that cause disturbing respiratory effects, most of it emitted from industrial sources especially from the stack of power plants and oil refineries. In this study Gaussian equations modelled by Matlab program to state the effect of pollutant NO2 gas on area around Durra refinery, this program also evaluate some elements such as wind and stability and its effect on stacks height. Data used in this study is the amount of fuel oil and fuel gas burn inside refinery at a year 2017. Hourly April month data chosen as a case study because it’s unsteady month. After evaluate emission rate of the all fuel and calculate exit velocity from
... Show MorePolycystic ovary syndrome (PCOS) is reproductive, endocrine, and metabolic disorder affecting females. The pathology of PCOS is complicated and associated to chronic low-grade inflammation, this includes a disruption in pro-inflammatory factor production, leukocytosis, and endothelial cell dysfunction, also associated with high level of pro-inflammatory cytokines, chemokines and leukocyte count. In addition, PCOS is characterized by hormonal and immunological dysfunction. Inflammation of the ovary affects ovulation and induces or aggravates systemic inflammation. Macrophage inflammatory protein-1 (MIP-1), a pro-inflammatory chemokine, is crucial in the recruitment of inflammatory and immunological cells to the place of inflammation
... Show More