Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which were then sintered by heating the samples. The effects of adding strontium oxide were analyzed by utilizing measurements of the Brinell hardness, X-ray diffraction, porosity, diametral tensile strength, roughness, and wettability of the finished surfaces. The results show that adding more strontium oxide (gradually increasing the ratio from 2% SrO to a 6% addition) raised the roughness and porosity. However, the microhardness and diametral tensile strength were enhanced with an increase in the volume fraction of strontium oxide particles. In conclusion, the alloy that contained 6 wt% strontium oxide microparticles had reasonably high mechanical properties and might be regarded as suitable for use in dental and medical applications due to its high wettability or, in other words, its low contact angle. The Brinell testing results for the diametral tensile strength, microhardness, and porosity of the generated strontium oxide–cp titanium composite alloy demonstrate its high potential for usage as a biomaterial, particularly in dental applications.
Porous silicon was prepared by using electrochemical etching process. The structure, electrical, and photoelectrical properties had been performed. Scanning Electron Microscope (SEM) observations of porous silicon layers were obtained before and after rapid thermal oxidation process. The rapid thermal oxidation process did not modify the morphology of porous layers. The unique observation was the pore size decreased after oxidation; pore number and shape were conserved. The wall size which separated between pore was increased after oxidation and that effected on charge transport mechanism of PS
Oil pollution of the soil due to a leakage in oil tubes, transportation of products, or during oil excavations can change the soil physical and mechanical, chemical, and biological properties. Consequently, the soil may or may not be eligible for engineering construction projects and it may need a significant treatment. Therefore, it is required to have a better understanding of the general behavior and the corresponding geotechnical properties upon pollution particularly for those areas associated with oil explorations and industry like Thi-Qar Governorate. Fine and coarse soils from two sites at the University of Thi-Qar are artificially contaminated with oil products ranging from 0% to 10% of their dry weight. Testing programs have been
... Show MoreThe monogenean Gyrodactylus taimeni Ergens, 1971 was recorded in this study for the first time in Iraq from gills of the common carp Cyprinus carpio Linnaeus, 1758. The description and measurements of this parasite as well as illustration were given. In addition, a list of species of Gyrodactylus so far recorded from C. carpio in Iraq is also included together with a list of all other hosts recorded for each gyrodactylid species.
Due to the increasing interest in the quality of auditing by writers, researchers and regulators of the auditing profession. The matter necessitated a statement of the extent to which the auditor practices professional skepticism, because of its significant impact in discovering errors and material misrepresentations contained in the financial statements in order to give the financial community confidence in them and the success of the audit process. The research aims to clarify the concept and importance of the practice of professional skepticism and its effect on the quality of the auditor's performance in Iraq. To achieve the research objectives, the two re
... Show MoreMetal oxide nanoparticles, including iron oxide, are highly considered as one of the most important species of nanomaterials in a varied range of applications due to their optical, magnetic, and electrical properties. Iron oxides are common compounds, extensive in nature, and easily synthesized in the laboratory. In this paper, iron oxide nanoparticles were prepared by co-precipitation of (Fe+2) and (Fe+3) ions, using iron (II and III) sulfate as precursor material and NH4OH solution as solvent at 90°C. After the synthesis of iron oxide particles, it was characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These tests confirmed the obtaining o
... Show MoreIn this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sa
... Show More