Petroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates inoculated with modified mineral salt media containing 1% hydrocarbons for five days in shaking incubator 150 rpm at 30oC. Then measured optical density by a spectrophotometer (UV–9200) at waves length 540nm, biomass, where three isolates appeared highest ability to growth than others isolates. These three bacterial isolates were diagnosed by morphological features, gram stain, microscopically examination, biochemical tests, as well as by using VITEK 2 Compact device. One of three isolates was selected and result of identification of this bacterium showed that belonged to Serretia ficaria.
The present study aims to establish an empirical correlation between biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) of the sewage flowing in Al-Diwaniyah wastewater treatment plant. The strength of the wastewater entering the plant varied from medium to high. High concentrations of BOD5 and COD in the effluent were obtained due to the poor performance of the plant. This was observed from the BOD5 /COD ratios that did not confirm with the typical ratios for the treated sewage. Regression equations for BOD5 and COD removal percentages were suggested which can be used to evaluate rapid effluent assessment after the treatment processes or optimal process control to improve the performance of wastewater treatment plants.
... Show MoreBackground: Hyperlipidemia is an elevated fat (lipids), mostly cholesterol and triglycerides, in the blood. These lipids usually bind to proteins to remain circulated so-called lipoprotein. Aims of the study: To determine taste detection threshold and estimate the trace elements (zinc) in serum and saliva of those patients and compare all of these with healthy control subjects. Methods: Eighty subjects were incorporated in this study, thy were divided into two groups: forty patients on simvastatin treatment age between (35-60) years, and forty healthy control of age range between (35-60) years. Saliva was collected by non-stimulated technique within 10 minutes. Serum was obtained from each subject. Zinc was estimated in serum and saliva
... Show MoreAs a result of the exacerbation of the problem of water pollution, research was directed towards studying the treatment using ceramic membranes, which proved to be highly effective in treating all water sources. The research aims to study the possibility of preparing a new type of ceramic membranes from Syrian zeolite that was not previously used in this field. In this research, ceramic membranes were prepared from Syrian raw zeolite in several stages. Zeolite sample was characterized, grinded, mixed with boric acid, pressed to form desks, treated thermally according to experiment program, finally coated with silver nanoparticles. Specifications of prepared membranes were determined according to reference methods, effectiveness of prepar
... Show MoreThis study conduct in Al-Muthanna governorate to assess five concentrations of
A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5,6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro(carboxylic)methylidene]-5,6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl(6-methyl-2-pyridylmethyl)amine to create a new ligand (ONMILA). This novel ligand was identified using a number
... Show MoreIn present work, new tetra-dentate ligand, titled 3,5-bis ((E)-5-Bromo-2-hydroxy benzylidene amino) benzoic acid (H3L), was prepared via an acid-catalyzed condensation process. New four metallic ligand complexes with Co(II), Ni(II), Cu(II) and Zn(II) ions, were also prepared from the refluxing of equivalent moles. Ligand's structure and its complexes; were confirmed by numerous characterization methods, including Ultraviolet-Visible, Infrared, Mass Spectrometer, 1H and 13C Nuclear Magnetic Resonance spectra, atomic absorption, magnetic moments, and molar conductivity measurements. The results of the spectroscopic analyzes proved that the prepared ligand acts as tetradentate bi-ionic ligand and it was bond
... Show MoreThe ligand [Potassium (E)-(4-(((2-((1-(3-aminophenyl) ethylidene) amino)-4-oxo-1,4- dihydropteridin-6-yl) methyl) amino)benzoyl)-L-glutamate] was prepared from the condensation reaction of folic acid with (3-aminoacetophenone) through Schiff reaction to give a new Schiff base ligand [H2L]. The ligand [H2L] was characterized by elemental analysis CHN, atomic absorption (A.A), (FT-I.R.), (U.V.-Vis), TLC, E.S. mass (for spectroscopes), molar conductance, and melting point. The new Schiff base ligand [H2L], reacts with Mn(II), Co(II), Ni(II), Cu(II), Cr(III) and Cd(II) metal ions and (2-aminophenol), (metal : derivative ligand : 2-aminophenol) to give a series of new mixed complexes in the general formula:- K3[M2(HL)(HA)2], (where M=Mn(II) and
... Show Moreالوصف A simple chemistry method approach was used to synthesise new ligand derivate from L-ascorbic acid and its complexes. All of them were water-soluble and are used quite extensively in the medical and pharmaceutical fields. This study synthesised the new ligand derivative from L-ascorbic acid-base using the following steps: A 5, 6-O-isopropylidene-L-ascorbic acid was prepared by reacting dry acetone with L-ascorbic acid followed by reacting it with trichloroacetic acid to yield [chloro (carboxylic) methylidene]-5, 6-O-isopropylidene-L-ascorbic acid in the second stage. In the third stage, the derivative was reacted with (methyl (6-methyl-2-pyridylmethyl) amine to create a new ligand (ONMILA). This novel ligand was identified using
... Show MoreA new Schiff bases ligand 4- ((2-hyolroxy phenylimino) methyl) -2, 6-dimethoxyphenol derived from condensation of 2- amino phenol with 4-hydroxy -3, 5-dimethoxy benzaldehyde have been synthesized and characterized by spectroscopy, spectra, Mass spectrum and elemental microanalysis (C.H.N). Metal Complexes with ions have been also synthesized and characterized spectroscopic methods spectroscopy, flame atomic absorption, molar conductivity measurements and magnetic susceptibility. These studies indicate that the moler ratio for the complexes. The complexes showed characteristics octahedral geometry with the (O,N) ligand coordinated in bidentate mode while with showed square planer. The enzyme activity of the ligand and i
... Show More2-benzamide benzothiazole complexes of Pd(II) , Pt(IV) and Au(III) ions were prepared by microwave assisted radiation. The ligand and the complexes were isolated and characterized in solid state by using FT-IR, UV-Vis spectroscopy, flame atomic absorption, elemental analysis CHNS , magnetic susceptibility measurements , melting points and conductivity measurements. The nature of complexes in liquid state was studied by following the molar ratio method which gave results approximately identical to those obtained from isolated solid state; also, stability constant of the prepared complexes were studied and found that they were stable in molar ratio 1:1.The complexes have a sequar planner geometry except Pt(IV) complex has octahedral .
... Show More