This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. The capability of mixed bacterial culture was examined to remediate the diesel-contaminated soil in bio piling system. For fast ex-situ treatment of diesel-contaminated soils, the bio pile system was selected. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). The amended soil: (contaminated soil with the addition of nutrients and bacterial inoculum), where the soil was mixed with 1.5% of sawdust, then supplied with the necessary nutrients and watered daily to provide conditions promoting microorganism growth. Unamended soil was prepared as a control (contaminated soil without addition). Both systems were equipped with oxygen to provide aerobic conditions, incubated at atmospheric temperature and weekly sampling within 35 days. Overall 75% of the total petroleum hydrocarbons were removed from the amended soil and 38 % of the control soil at the end of study period. The study concluded that ex-situ experiment (Bio pile) is a preferable, economical, and environmentally friendly procedure, thus representing a good option for the treatment of soil contaminated with diesel.
In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to
... Show MoreThe major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the ti
... Show MoreSoil water retention curves (SWRCs) are crucial for characterizing soil moisture dynamics and are particularly relevant in the context of irrigation management. A study was carried out to obtain the SWRC, inflection point, S index, pore size distribution curve, macro porosity, and air capacity from samples submitted to saturation and re-saturation processes. Five different-texture disturbed soil samples Sandy Loam, Loam, Sandy Clay Loam, Silt Loam, and Clay were collected. After obtaining SWRC, each air-dried soil samples were submitted to particle size distribution and clay dispersed in water analyses to verify the soil lost clay. The experimental design was completely randomized with three replications using two processes of SWRC (saturat
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreThe Braille Recognition System is the process of capturing a Braille document image and turning its content into its equivalent natural language characters. The Braille Recognition System's cell transcription and Braille cell recognition are the two basic phases that follow one another. The Braille Recognition System is a technique for locating and recognizing a Braille document stored as an image, such as a jpeg, jpg, tiff, or gif image, and converting the text into a machine-readable format, such as a text file. BCR translates an image's pixel representation into its character representation. As workers at visually impaired schools and institutes, we profit from Braille recognition in a variety of ways. The Braille Recognition S
... Show MoreCompressing an image and reconstructing it without degrading its original quality is one of the challenges that still exist now a day. A coding system that considers both quality and compression rate is implemented in this work. The implemented system applies a high synthetic entropy coding schema to store the compressed image at the smallest size as possible without affecting its original quality. This coding schema is applied with two transform-based techniques, one with Discrete Cosine Transform and the other with Discrete Wavelet Transform. The implemented system was tested with different standard color images and the obtained results with different evaluation metrics have been shown. A comparison was made with some previous rel
... Show More