Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Cracking was initiated at a small notch located at the middle of the bottom face of the concrete beam. The response of plain concrete beam subjected to pure bending via two point load application was detected using (XFEM) analysis of meso-scale concrete model. Assuming full bond between aggregate particles, and mortar at interfacial zone, the flexural strength of plain concrete beam is increased when aggregate particles size is increased, so that bending and shear stress were affected by void percentage and aggregate particles distribution. The maximum deflection at midspan was increased when the aggregate particles size decreases.
Background: Cytology is one of the important diagnostic tests done on effusion fluid. It can detect malignant cells in up to 60% of malignant cases. The most important benign cell present in these effusions is the mesothelial cell. Mesothelial atypia can be striking andmay simulate metastatic carcinoma. Many clinical conditions may produce such a reactive atypical cells as in anemia,SLE, liver cirrhosis and many other conditions. Recently many studies showed the value of computerized image analysis in differentiating atypical cells from malignant adenocarcinoma cells in effusion smears. Other studies support the reliability of the quantitative analysisand morphometric features and proved that they are objective prognostic indices. Method
... Show MoreThis work focused on principle of higher order mode excitation using in- line Double Clad Multi-Mode Mach-Zehnder Interferometer (DC-MM-MZI). The DC-MM-MZI was designed with 50 cm etched MMF. The etching length is 5cm. The tenability of this interferometer was studied using opt grating ver.4.2.2 and optiwave
ver. 7 simulator. After removing (25, 35, 45, 55) μm from MMF and immersing this segment of MMF with water bath contained distilled water and ethanol, in addition to, air. Pulsed laser source centered at 1546.7nm ,pulse width 10ns and peak power 1.33mW was propagated via this interferometer Maximum modes were obtained in case of air surrounded media which are 9800 and 25 um removed cladding layer, with peak power 49.800 m
Over the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
Incremental sheet forming (ISF) is a metal forming technology in which small incremental deformations determine the final shape. The sheet is deformed by a hemispherical tool that follows the required shape contour to deform the sheet into the desired geometry. In this study, single point incremental sheet forming (SPIF) has been implemented in dentistry to manufacture a denture plate using two types of stainless steel, 304 and 316L, with an initial thickness of 0.5mm and 0.8mm, respectively. Stainless steel was selected due to its biocompatibility and reasonable cost. A three-dimensional (3D) analysis procedure was conducted to evaluate the manufactured part's geometrical accuracy and thickness distribution. The obtained results confirm
... Show More BaCoxTixFe12-2xO19 (x=0.1, 0.5, 0.7, 0.9, 1.7) were prepared using powder technology technique . X-ray diffraction with diffractometer CuKα radiation analysis and Rietveld refinement of the samples were studied and showed a single phase of hexagonal structure with SP63/mmc space group . Lattice parameters, cell volume , crystallite size and x-ray density were determined .The hexagonal structure was represented by using PowderCell program showing the atomic positions of Co ,Ti, and Fe ions.
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
This study focuses on CFD analysis in the field of the shell and double concentric tube heat exchanger. A commercial CFD package was used to resolve the flow and temperature fields inside the shell and tubes of the heat exchanger used. Simulations by CFD are performed for the single shell and double concentric tube.
This heat exchanger included 16 tubes and 20 baffles. The shell had a length of 1.18 m and its diameter was 220 mm. Solid Works 2014, ANSYS 15.0 software was used to analyze the fields of flow and temperature inside the shell and the tubes. The RNG k-ε model was used and it provided good results. Coarse and fine meshes were investigated, showing that aspect ratio has no significant effect. 14 million
... Show MoreThe study was conducted at the fields of the Department of Horticulture and Landscape Gardening, College of Agriculture Engineering Sciences, University of Baghdad. During the spring 2017. All the recommended practices were followed during experimentation. The experimental material consisted four Genotype it is Batraa, Btera, Mosulle, and local selection. The experiment was applied in Randomized Complete Block Design (RCBD). The objectives of Study were to estimate the some genetic parameters and path coefficient for some traits Okra, The results of statistical analysis for these genotypes were highly significant differences for all traits except the traits number of leaves, the numbe