Preferred Language
Articles
/
RhdB240BVTCNdQwCsCc1
تقصي فاعلية التعليم الالكتروني خلال فيروس كورونا المستجد (كوفيد 19) في كلية التربية للبنات/ جامعة بغداد
...Show More Authors

      تبنت العديد من المؤسسات الأكاديمية التعلم الإلكتروني منذ سنوات ، وقد أثبت فاعليته في كثير من هذه المؤسسات لاسيما تلك المهتمة بتعلم اللغات الاجنبية. الا انه  مع انتشار جائحة كورونا اصبح التعليم الالكتروني  ضرورة ملحة في الجامعات في جميع أنحاء العالم ، بما في ذلك الجامعات العراقية.  تهدف الدراسة الحالية إلى تقصي أثر هذا الوباء على التعلم الإلكتروني في أحدى الكليات العراقية . يفترض الباحث أن تقبل الطلبة للتعلم الإلكتروني ، وكذلك أداءهم ، قد تحسن خلال هذه الأزمة . ولقياس فاعلية التعلم الإلكتروني أثناء الجائحة ، صممت الباحثة استبيانا وعرضته على 130 طالبة في قسم اللغة الإنجليزية في كلية التربية للبنات / جامعة بغداد . اضافة الى ذلك، تم إجراء مقابلة عبر الإنترنت مع نفس الطلاب لمناقشة موافقتهم أو عدم موافقتهم على أسئلة الاستبيان.  أظهرت النتائج ما يلي: أولاً ، يمكن أن يكون التعلم الإلكتروني مفيدًا جدًا إذا تم استخدامه مع التعليم التقليدي.  ثانيًا ،نظرة الطالبات للتعلم الالكتروني وكذلك ادائهن تغير تمامًا عندما أصبح التعلم الإلكتروني هو الحل الوحيد للتعلم خلال هذه الأزمة.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Detection and Classification of The Osteoarthritis in Knee Joint Using Transfer Learning with Convolutional Neural Networks (CNNs)
...Show More Authors

    Osteoarthritis (OA) is a disease of human joints, especially the knee joint, due to significant weight of the body. This disease leads to rupture and degeneration of parts of the cartilage in the knee joint, which causes severe pain. Diagnosis of this disease can be obtained through X-ray. Deep learning has become a popular solution to medical issues due to its fast progress in recent years. This research aims to design and build a classification system to minimize the burden on doctors and help radiologists to assess the severity of the pain, enable them to make an optimal diagnosis and describe the correct treatment. Deep learning-based approaches, such as Convolution Neural Networks (CNNs), have been used to detect knee OA usin

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (3)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Machine Learning Prediction of Brain Stroke at an Early Stage
...Show More Authors

     The healthcare sector has traditionally been an early adopter of technological progress, gaining significant advantages, particularly in machine learning applications such as disease prediction. One of the most important diseases is stroke. Early detection of a brain stroke is exceptionally critical to saving human lives. A brain stroke is a condition that happens when the blood flow to the brain is disturbed or reduced, leading brain cells to die and resulting in impairment or death. Furthermore, the World Health Organization (WHO) classifies brain stroke as the world's second-deadliest disease. Brain stroke is still an essential factor in the healthcare sector. Controlling the risk of a brain stroke is important for the surviv

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Sep 29 2020
Journal Name
Iraqi Journal Of Science
An Automated Classification of Mammals and Reptiles Animal Classes Using Deep Learning
...Show More Authors

Detection and classification of animals is a major challenge that is facing the researchers. There are five classes of vertebrate animals, namely the Mammals, Amphibians, Reptiles, Birds, and Fish, and each type includes many thousands of different animals. In this paper, we propose a new model based on the training of deep convolutional neural networks (CNN) to detect and classify two classes of vertebrate animals (Mammals and Reptiles). Deep CNNs are the state of the art in image recognition and are known for their high learning capacity, accuracy, and robustness to typical object recognition challenges. The dataset of this system contains 6000 images, including 4800 images for training. The proposed algorithm was tested by using 1200

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Mon Apr 01 2019
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of a Teaching Strategy Based on the Cognitive Model of Daniel in the Development of Achievement and the Motivation of learning the School Mathematics among the Third Intermediate Grade Students
...Show More Authors

This research aims to examine the effectiveness of a teaching strategy based on the cognitive model of Daniel in the development of achievement and the motivation of learning the school mathematics among the third intermediate grade students in the light of their study of "Systems of Linear Equations”. The research was conducted in the first semester (1439/1440AH), at Saeed Ibn Almosaieb Intermediate School, in Arar, Saudi Arabia. A quasi-experimental design has been used. In addition, a (pre & post) achievement test (20 Questions) and a (pre & post) scale of learning motivation to the school mathematics (25 Items) have been applied on two groups: a control group (31Students), and an experimental group (29 Students). The resear

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 27 2024
Journal Name
Journal Of Applied Mathematics And Computational Mechanics
Fruit classification by assessing slice hardness based on RGB imaging. Case study: apple slices
...Show More Authors

Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 %  1.66 %. This

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Hybrid CNN-SMOTE-BGMM Deep Learning Framework for Network Intrusion Detection using Unbalanced Dataset
...Show More Authors

This paper proposes a new methodology for improving network security by introducing an optimised hybrid intrusion detection system (IDS) framework solution as a middle layer between the end devices. It considers the difficulty of updating databases to uncover new threats that plague firewalls and detection systems, in addition to big data challenges. The proposed framework introduces a supervised network IDS based on a deep learning technique of convolutional neural networks (CNN) using the UNSW-NB15 dataset. It implements recursive feature elimination (RFE) with extreme gradient boosting (XGB) to reduce resource and time consumption. Additionally, it reduces bias toward

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref
Publication Date
Thu Dec 13 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
The Relationship between Phylogenic Typing and Antimicrobial Susceptibility Patterns forEscherichia coliIsolatedfrom UTIs atMany Hospitals in Baghdad City
...Show More Authors

Objective:The current study aime to isolate Escherichia colifrom urinary tract infections(UTIs) in many Baghdad hospitals. The study concentrate on phylogenic groups and this was done based on triplex PCRmethod by primers besieged to three genetic markers, chuA, yjaA and TspE4.C2. Evaluate the relationship of phylogenic groups of E. coli isolates with the antibiotic-non sensitive patterns. Methodology:Four hundredof E.coli bacteria isolated from urine samples from five hospitals in Baghdad city include: Ghazi AL-Hariri, Ibin- Al-Beledi , AL-Iskan , AL-Nooman and AL-Yarmoke hospitals. Phylogenetic categorizatio

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Fri Mar 08 2019
Journal Name
Desalination And Water Treatment
Xylenol orange removal from aqueous solution by natural bauxite (BXT) and BXT-HDTMA: kinetic, thermodynamic and isotherm modeling
...Show More Authors

Sorption is a key factor in removal of organic and inorganic contaminants from their aqueous solutions. In this study, we investigated the removal of Xylenol Orange tetrasodium salt (XOTS) from its aqueous solution by Bauxite (BXT) and cationic surfactant hexadecyltrimethyl ammonium bromide modified Bauxite (BXT-HDTMA) in batch experiments. The BXT and BXT-HDTMA were characterized using FTIR, and SEM techniques. Adsorption studies were performed at various parameters i.e. temperature, contact time, adsorbent weight, and pH. The modified BXT showed better maximum removal efficiency (98.6% at pH = 9.03) compared to natural Bauxite (75% at pH 2.27), suggesting that BXT-HDTMA is an excellent adsorbent for the removal of XOTS from water. The equ

... Show More
Publication Date
Mon Dec 28 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Predicting the Sporting Achievement in the Pole Vault for Men Using Artificial Neural Networks
...Show More Authors

The physical sports sector in Iraq suffers from the problem of achieving sports achievements in individual and team games in various Asian and international competitions, for many reasons, including the lack of exploitation of modern, accurate and flexible technologies and means, especially in the field of information technology, especially the technology of artificial neural networks. The main goal of this study is to build an intelligent mathematical model to predict sport achievement in pole vaulting for men, the methodology of the research included the use of five variables as inputs to the neural network, which are Avarage of Speed (m/sec in Before distance 05 meters latest and Distance 05 meters latest, The maximum speed achieved in t

... Show More
View Publication Preview PDF