Bioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars released from waste paper were fermented into bioethanol with Saccharomyces cerevisiae. The maximum concentration of bioethanol estimated was 9.5 g/L after 48h of cultivation, the yield and volumetric productivity were 0.454 g/g glucose and 0.2g bioethanol/ L h. respectively. This study of ultrasound and sodium hydroxide treatment may be (we think) it will be a promising technique to develop bioethanol production from waste paper.
One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreA simple, accurate, and cost-efficient UV-Visible spectrophotometric method has been developed for the determination of naphazoline nitrate (NPZ) in pure and pharmaceutical formulations. The suggested method was based on the nucleophilic substitution reaction of NPZ with 1,2-naphthoquinone-4-sulfonate sodium salt in alkaline medium at 80°C to form an orange/red-colored product of maximum absorption (λmax) at 483 nm. The stoichiometry of the reaction was determined via Job's method and limiting logarithmic method, and the mechanism of the reaction was postulated. Under the optimal conditions of the reaction, Beerʼs law was obeyed within the concentration range 0.5–50 μg/mL, the molar absorptivity value (ε) was 5766.5 L × mol–1 × c
... Show MoreIn this study, the activity concentrations of indoor radon, thoron
and their progeny have been measured in air for 61 different
locations of Al-Maddan city using twin cup dosimeter. Furthermore,
some useful parameters concerning the health hazards have been
estimated; working level month (WLM), annual effective dose (Eff),
and excess lung cancer per million person per year (ELC).The results
show that the values of radon gas levels in the investigated districts
varied from 56.28 to 194.43Bq/m3with an overall average value
132.96Bq/m3, while 0.313 to 1.085 for WLM with an overall average
0.740, respectively. The value of Eff and ELC have been found to
vary from 1.420 to 4.918 mSv/y with an overall average valu
Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreIn the current study, remote sensing techniques and geographic information systems were used to detect changes in land use / land cover (LULC) in the city of Al Hillah, central Iraq for the period from 1990 - 2022. Landsat 5 TM and Landsat 8 OLI visualizations, correction and georeferencing of satellite visuals were used. And then make the necessary classifications to show the changes in LULC in the city of Al Hillah. Through the study, the results showed that there is a clear expansion in the urban area from 20.5 km2 in 1990 to about 57 km2 in 2022. On the other hand, the results showed that there is a slight increase in agricultural areas and water. While the arid (empty) area decreased from 168.7 km 2 to 122 km 2 in 2022. Long-term ur
... Show More