In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displacement amplitude response of the foundation resting on dry sand models is more than that on the saturated sand by about 5.0 to 10 %.
In order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carried
... Show MoreImproving in assembling technology has provided machines of higher evaluation with better resistances and managed behavior. This machinery led to remarkably higher dynamic forces and therefore higher stresses. In this paper, a dynamic investigation of rectangular machine diesel and gas engines foundation at the top surface of one-layer dry sand with various states (i.e., loose, medium and dense) was carried out. The dynamic investigation is performed numerically by utilizing limited component programming, PLAXIS 3D. The soil is accepted as flexible totally plastic material submits to Mohr-Coulomb yield basis. A harmonic load is applied at the foundation with amplitude of 10 kPa at a frequency of (10, 15 and 20) HZ and se
... Show MoreIn order to understand the effect of (length of pile / diameter of pile) ratio on the load carrying capacity and settlement reduction behavior of piled raft resting on loose sand, laboratory model tests were conducted on small-scale models. The parameters studied were the effect of pile length and the number of piles. The load settlement behavior obtained from the tests has been validated by using 3-D finite element in ABAQUS program, was adopted to understand the load carrying response of piled raft and settlement reduction. The results of experimental work show that the increase in (Lp/dp) ratio led to increase in load carrying capacity by piled raft from (19.75 to 29.35%), (14.18 to 28.87%) and (0 to 16.49%) , the maximum load carr
... Show MoreThe research aims to extrapolate the repercussions of the use of expert systems in the work of the external auditor on the quality of audit, as the research problem was that despite the use of these techniques in audit work, there is a problem related to the efficiency and effectiveness of these technological systems used in audit work, the feasibility of their use and the extent of their impact: The quality of the audit process.
The researchers adopted the questionnaire as a tool for collecting study data from a community composed of auditors in auditing offices and companies in Iraq, and the auditors of the Iraqi Federal Financial Supervision Bureau. The number of recovered and valid qu
... Show MoreThis research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.
Tillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
In this research, the geotechnical properties of the soil profile in Hilla city within Babylon Governorate in the middle parts of Iraq are described. The geotechnical data at the specific sites were collected from some geotechnical investigation reports performed at some selected locations. This article is devoted to studying the distribution of soil properties (the physical and mechanical) in the horizontal and vertical directions. Moreover, a correlation between different physical and mechanical properties is performed. The correlation is executed using statistical analysis by Microsoft Excel Software (2016). From the regression results, it was found that the nature of the soil is c
Gypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%, A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil. The result shows that adding a different per
... Show More