In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displacement amplitude response of the foundation resting on dry sand models is more than that on the saturated sand by about 5.0 to 10 %.
With the increase in industry and industrial products, quantities of waste have increased worldwide, especially plastic waste, as plastic pollution is considered one of the wastes of the modern era that threatens the environment and living organisms. On this basis, a solution must be found to use this waste and recycle it safely so that it does not threaten the environment. Therefore, this research used plastic waste as an improvement material for clay soil. In this research, two types of tests were conducted, the first of which was a laboratory test, where the undrained shear strength (cohesion), compression index (Cc), and swelling index (Cr) of the improved and unimproved soils were calculated (plastic was added in pr
... Show MoreRecently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 3
... Show MoreAn experiment was carried out in a field in Husayniyah sub-district of the Holy Karbala Governorate. The research included studying the impact of the plowing depth and soil moisture on some technical indicators when using the disc plow. The 80 hp New Holland tractor was used in this experiment. Two factors were studied, the first factor is the soil moisture (12- 9%), (16-13%) and (20-17%) and the second factor was the depth of tillage (10-13) cm, (15-18) cm and (20-23) cm, which represented the secondary blocks. Bulk density, percentage of slippage and drawing force were studied. The field trials was conducted according to Split blocks in a randomized complete block design in three replicate. Consequences showed (according to the conditions
... Show MoreThe current study was conducted to evaluate the effect a mixture of threespecies of arbuscular mycorrhizal fungi (Glomus etunicatum, G. leptotichum andRhizophagus intraradices) double and triple mixture and organic matter by usingplastic pots in the greenhouse at some mycorrhiza and physiological limitationscharacteristics in tomato plant after four and eight weeks of cultivation. Theresults of the determinants mycorrhiza significant increase the percentage ofmycorrhizal frequency F% dry weight of roots mycorrhiza (g.plant-1) andorganic matter in all mycorrhiza single, double and triple mixture after four andeight weeks cultivation treatments. The highest percentage of mycorrhizalfrequency and increase the dry weight of the root in the trea
... Show MoreGypseous soils represented one of the most complex salty soils that faced the geotechnical engineers. Structures that built on gypsum soil will undergo unexpected distortions that will eventually contribute to catastrophic failure. The purpose of this article is to understand the durability of gypsum soil against wetting drying cycles after improvement with polyurethane polymer especially investigate the effect of the wetting-drying cycle on collapsibility. The soil was brought from Sawa lake in AL-Muthanna Governorate in Iraq, with gypsum content 65.5%, A set of Odometer tests were performed to determine the collapsibility potential (CP) for treated and untreated gypsum soil. The result shows that adding a different per
... Show MoreThis paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the re
... Show MorePetroleum is one of the most important substances consumed by man at present times, a major energy source in this century, petroleum oils can cause environmental pollution during various stages of production, transportation, refining and use, petroleum hydrocarbons pollutions ranging from soil, ground water to marine environment, become an inevitable problem in the modern life, current study focused on bioremediation process of hydrocarbons contaminants that remaining in the bottom of gas cylinders and discharged to the soil. Twenty-four bacterial isolates were isolated from contaminated soils all of them gram negative bacteria, bacterial isolates screening to investigate the ability of biodegradation of hydrocarbons, these isolates
... Show MoreSoil stabilization with stone powder is a good solution for the construction of subgrade for road way and railway lines, especially under the platforms and mostly in transition zones between embankments and rigid structures, where the mechanical properties of supporting soils are very influential. Stone powder often has a unique composition which justifies the need for research to study the feasibility of using this stone powder type for ground improvement applications. This paper presents results from a comprehensive laboratory study carried out to investigate the feasibility of using stone powder for improvement of engineering properties of clays.
The stone powder contains bassanite (CaSO4. ½ H
... Show More