Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreDue to the lack of vehicle-to-infrastructure (V2I) communication in the existing transportation systems, traffic light detection and recognition is essential for advanced driver assistant systems (ADAS) and road infrastructure surveys. Additionally, autonomous vehicles have the potential to change urban transportation by making it safe, economical, sustainable, congestion-free, and transportable in other ways. Because of their limitations, traditional traffic light detection and recognition algorithms are not able to recognize traffic lights as effectively as deep learning-based techniques, which take a lot of time and effort to develop. The main aim of this research is to propose a traffic light detection and recognition model based on
... Show MoreThe research aims to identify the effect of jigsaw strategy in learning achievement and engaging for the third grade intermediate students in chemistry. The research sample consisted of (61) students distributed in two experimental and control groups. The research tools consisted in the achievement test and the measure of engaging learning. The results showed that there are statistically significant differences at the level of (α = 0.05) between the experimental group and the control group in both the achievement test and the measure of learning involvement for the benefit of the experimental group. In this light, the researcher recommended the use of jigsaw strategy for teaching the subject matter. Lamia because of its impact in raising
... Show MoreThe Environmental Data Acquisition Telemetry System is a versatile, flexible and economical means to accumulate data from multiple sensors at remote locations over an extended period of time; the data is normally transferred to the final destination and saved for further analysis.
This paper introduces the design and implementation of a simplified, economical and practical telemetry system to collect and transfer the environmental parameters (humidity, temperature, pressure etc.) from a remote location (Rural Area) to the processing and displaying unit.
To get a flexible and practical system, three data transfer methods (three systems) were proposed (including the design and implementation) for rural area services, the fi
... Show MoreIntroduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were dete
... Show MorePurpose: Determining and identifying the relationships of smart strategic education systems and their potential effects on sustainable success in managing clouding electronic business networks according to green, economic and environmental logic based on vigilance and awareness of the strategic mind.
Design: Designing a hypothetical model that reveals the role and investigating audit and cloud electronic governance according to a philosophy that highlights smart strategic learning processes, identifying its assumptions in cloud spaces, choosing its tools, what it costs to devise expert minds, and strategic intelligence.
Methodology:
Channel estimation and synchronization are considered the most challenging issues in Orthogonal Frequency Division Multiplexing (OFDM) system. OFDM is highly affected by synchronization errors that cause reduction in subcarriers orthogonality, leading to significant performance degradation. The synchronization errors cause two issues: Symbol Time Offset (STO), which produces inter symbol interference (ISI) and Carrier Frequency Offset (CFO), which results in inter carrier interference (ICI). The aim of the research is to simulate Comb type pilot based channel estimation for OFDM system showing the effect of pilot numbers on the channel estimation performance and propose a modified estimation method for STO with less numb
... Show More