The drying process is considered an effective technique for preserving foods and agricultural products from spoilage. Moreover, the drying process lessens the products' weight, volume, and packaging, which prompts a reduction in the products' transportation costs. The drying technique with solar energy represents an ancient method, still alluring due to solar energy abundance and cost‐effectiveness. In this article, the previous manuscripts concerned with studying and analyzing indirect solar dryer systems that utilize innovative solar air heaters (SAHs) are reviewed. The results and conclusions are discussed intensively to clarify the significance of utilizing this type of drying technique. The effect of many parameters on the thermal performance and efficiency of the dryer systems has been investigated. The investigated parameters included the incident solar radiation, air flow rates, outlet solar air heater temperature, absorber plate material, moisture content of the agricultural products, and the shape and configuration of the SAH. Moreover, the manuscript outlines the drying rate mathematical models that were used to validate the experimental findings. Based on the review, it is found that solar dryer systems with modified SAHs designs rather than flat plate SAH have considerable effects on enhancing thermal performance and efficiency.
In the last few decades, growing interest has been shown in the development of new solar selective coatings based on transition metal nitride and/or oxinitride for solar absorbing applications. Solar thermal collectors are well thought out to be the most effective process of converting and harvesting solar radiation. In this investigation, Cu/TiON/CrO2 multilayered solar selective absorber coatings have been coated onto Al substrates using the dip-coating process followed by an annealing process at (400, 450, 500, 550, and 600 °C. The XRD analysis showed excellent crystalline quality for the prepared thin films along with enhanced surface features as proved by FESEM images, and the grains are in the range of (27–81) nm. The optical in
... Show MoreThe influence of process speed (PS) and tillage depth (TD) , on growth of corn (Zea mays L) yield, for Maha cultivar, were tested at two ranges of PS of 2.483 and 4.011 km.hr-1, and three ranges of TD of 15,20 and 25cm. The experiments were conducted in a factorial experiment under complete randomized design with three replications. The results showed that the PS of 2.483 km.hr-1 was significantly better than the PS of 4.011km.hr-1 in all studied conditions. The , slippage ratio (SR) and the machine efficiency (ME), the physical soil characteristics represented by the soil density and porosity (SBD and TSP), and the plant characteristics represented the roots dry weight, PVI and the crop productivity (CP), except adjective of the fu
... Show MoreMany water supplies are now contaminated by anthropogenic sources such as domestic and agricultural waste, as well as manufacturing activities, the public's concern about the environmental effects of wastewater contamination has grown. Several traditional wastewater treatment methods, such as chemical coagulation, adsorption, and activated sludge, have been used to eliminate pollution; however, there are several drawbacks, most notably high operating costs, because of its low operating and repair costs, the usage of aerobic waste water treatment as a reductive medium is gaining popularity. Furthermore, it is simple to produce and has a high efficacy and potential to degrade pollu
... Show Morel
Previous studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.