This paper is devoted to investigate the effect of internal curing technique on the properties of self-compacting concrete. In this study, self-compacting concrete is produced by using limestone powder as partial replacement by weight of cement with percentage of (5%), sand is partially replaced by volume with saturated fine lightweight aggregate which is thermostone aggregate as internal curing material in three percentages of (5%, 10%, 15%) for self-compacting concrete, and the use of two external curing conditions which are water and air. The experimental work was divided into three parts: in the first part, the workability tests of fresh self-compacting concrete were conducted. The second part included conducting compressive strength test and modulus of rupture test at ages of (7, 28 and 90) days. The third part included doing the shrinkage test at age of (7, 14, 21, 28) days. The results show that internally cured self-compacting concrete has the best workability and the best properties of hardened concrete which include (compressive strength, modulus of rupture) of externally cured self-compacting concrete with both water and air as compared with reference concretes. Also, the hardened properties of internally cured self-compacting concrete with percentage of (5%) with thermostone aggregate is the best as compared with that of percentages (10% and 15%) in both external curing conditions. In general, the results of shrinkage test have shown reduction in shrinkage of internally cured self-compacting concrete as compared with reference concretes and this reduction increases with increase in the thermostone aggregate content-within-self-compacting-concrete.
This contribution evaluates the influence of Cr doping on the ground state properties of SrTiO3 Perovskite using GGA-PBE approximation. Results of the simulated model infer agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ doping levels in SrTiO3 has been investigated. Structural parameters infer that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Substituting Ti site by Cr3+ results the energy gap in being eliminated revealing a new electrical case of conducting material for the system. Furthermore, it has been noticed that Cr doping either at Sr or Ti positions could effectiv
... Show MoreLandfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreIraqi siliceous rocks were chosen to be used as raw materials in this study which is concern with the linear shrinkage and their related parameters. They are porcelinite from Safra area (western desert) and Kaolin Duekla, their powders were mixed in certain percentage, to shape compacts and sintered. The study followed with thermal and chemical treatments, which are calcination and acid washing. The effects on final compact properties such as linear shrinkage were studied. Linear shrinkage was calculated for sintered compacts to study the effects of calcination processes, chemical washing, weight percentage, sintering processes, loading moment were studied on this property where the compacts for groups is insulating materials.
Linear
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Organophosphorus insecticide and growth regulator namely Ethephon (2-chloroethylphosphonic acid) are widely used as a ripening process accelerator and a cultivation duration inhibitor. Pomegranate extract (PPE) has recently been taken into consideration due to its pharmacological effects especially those associated with renal diseases. Thus, this study aims to investigate the possible protective effect of PPE against ethephon-induced nephrotoxicity in rats. In this study four groups of adult male rats were divided into control group, PPE 400 mg/kg group, Ethephon 250 mg/kg group, and finally, PPE + Ethephon group (treated with the same dose of PPE group and Ethephon group). In the current study, kidney function parameters (KIM-1, creatin
... Show MorePurpose: As managers can lead a set of ways to improve internal communication in public organizations, and leadership can cultivate a common understanding of goals within the organization and share the vision in preparation for its way to better performance, the purpose of the research is to assess the type and strength of the relationship between internal communication and different forms of leadership. Theoretical framework: The study demonstrates how leaders in public organizations improve internal communication, related to employees' perceptions of public organizations' routines and performance. Design/methodology/approach: The study uses the ordinary least squares (OLS) and applied multiple regression A sa
... Show MoreBack ground: Microbial penetration inside the implant's internal hole creates a bacterial reservoir that is related with an area of inflamed connective tissue opposite the fixture-abutment junction and this can affect the health of the peri-implant tissue. Aims of the study: Evaluate the types aerobic and anaerobic bacterial count-percentage and difference between Aerobic and Anaerobic microflora in the implant screw hole three months after implant placement. Monitor the periodontal health status of all patients, throughout the study. Material and methods: Study methodology; Eight partially edentulous patients received 20 dental implants and these implants done with flapless surgical procedure. All patients examined clinically to determined
... Show More