The main objectives of this study are to study the enhancement of the load-carrying capacity of Asymmetrical castellated beams with encasement the beams by Reactive Powder Concrete (RPC) and lacing reinforcement, the effect of the gap between top and bottom parts of Asymmetrical castellated steel beam at web post, and serviceability of the confined Asymmetrical castellated steel. This study presents two concentrated loads test results for four specimens Asymmetrical castellated beams section encasement by Reactive powder concrete (RPC) with laced reinforcement. The encasement of the Asymmetrical castellated steel beam consists of, flanges unstiffened element height was filled with RPC for each side and laced reinforced which are used inclined continuous reinforcement of two layers on each side of the Asymmetrical castellated steel beam web. The inclination angle of lacing reinforcement concerning the longitudinal axis is 45. Four specimens with four different configurations will be prepared and tested under two concentrated loads at the mid-third of the beam span. The tested specimen's properties are the First model; unconfined, Asymmetrical castellated steel beam (Reference), while the second, third, and fourth models consist of Asymmetrical Castellated steel beam (web and flange) confined with (RPC) with 19.1, 38.2, and 57.3 mm gap, respectively, between the two beams sections (the upper and lower one). The results of the experimental tests show that the use of RPC enhanced the properties of the castellated beams in all selected conditions despite creating a gap between the castellated beams.
Castellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve com
... Show MoreThe Asymmetrical Castellated concavely – curved soffit Steel Beams with RPC and Lacing Reinforcement improves compactness and local buckling (web and flange local buckling), vertical shear strength at gross section (web crippling and web yielding at the fillet), and net section ( net vertical shear strength proportioned between the top and bottom tees relative to their areas (Yielding)), horizontal shear strength in web post (Yielding), web post-buckling strength, overall beam flexure strength, tee Vierendeel bending moment and lateral-torsional buckling, as a result of steel section encasement. This study presents two concentrated loads test results for seven specimens Asymmetrical Castellated concavely – curved soffit Steel Be
... Show MoreThe behavior investigation of castellated beams with fiber-reinforced lightweight concrete deck slab as a modified choice for composite steel-concrete beams affected by harmonic load is presented in this study. The experimental program involved six fixed-supported castellated beams of 2140mm size. Three types of concrete were included: Normal Weight Concrete (NWC), Lightweight Aggregate Concrete (LWAC), and Lightweight Fiber-Reinforced Aggregate Concrete (LWACF). The specimens were divided into two groups: the first comprised three specimens tested under harmonic load effect of 30Hz operation frequency for 3 days, then the residual strength was determined through static load application. The second group included three specimens ide
... Show MoreEnvironmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib
The aim of this study is to investigate the behavior of composite castellated beam in which the concrete slab and steel beam connected together with headed studs shear connectors. Four simply supported composite beams with various degree of castellation were tested under two point static loads. One of these beams was built up using standard steel beam, i.e. without web openings, to be a reference beam. The other three beams were fabricated from the same steel I-section with various three castellation ratios, (25, 35, and 45) %. In all beams the concrete slab has the same section and properties. Deflection at mid span of all beams was measured at each 10 kN load increment. The test results show that the castellation process leads to
... Show MoreCurrent numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the
... Show MoreNon-biodegradability of rubber tires contributes to pollution and fire hazards in the natural environment. In this study, the flexural behavior of the Rubberized Reactive Powder Concrete (RRPC) beams that contained various proportions and sizes of scrap tire rubber was investigated and compared to the flexural behavior of the regular RPC. Fresh properties, hardened properties, load-deflection relation, first crack load, ultimate load, and crack width are studied and analyzed. Mixes were made using micro steel fiber of the straight type, and they had an aspect ratio of 65. Thirteen beams were tested under two loading points (Repeated loading) with small-scale beams (1100 mm, 150 mm, 100 mm) size.
The fine aggregate
... Show MoreA good performance of reinforced concrete structures is ensured by the bond between steel and concrete, which makes the materials work together, forming a part of solidarity. The behavior of the bond between the reinforcing bar and the surrounding concrete is significant to evaluate the cracking control in serviceability limit state and load capacity in the ultimate limit state. In this investigation, the bond stresses between reinforcing bar and reactive powder concrete (RPC) was considered to compare it with that of normal strength concrete (NSC). The push-out test with short embedment length is considered in this study to evaluate the bond strength, bond stress-slip relationship, and bond stress-crack width relationsh
... Show More