In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in the middle third of the effective span. The objectives of this study include investigating the behavior of the composite prestressed concrete beams under and after the exposure to a direct fire flame, as well as finding their residual load-carrying capacity. Tests demonstrate significant deteriorations caused by exposure to high temperatures associated with the increase of the member’s camber. The increase of the midspan camber after heating exposure reached approximately 200%. On the other hand, the 1-h steady-state exposure of test specimens to temperatures of 700 and 800 °C led to reduce the load-carrying capacity of the heat-deteriorated beams up to 45% and 54%, respectively.
The research aim to the usage educational method for jump shooting and it effect on speed strength in basketball for the specialist students in College Sport of Dayla University, which used the following statistic treatment (The T.test for compatible specimens), so after statistic treatment which appears theres a tow moral differences in speed strength and jump shooting tests results to (legs & arms) for the before and after tests, and after that the conclusions we positive and the second the special drills effect immaterial speed strength to legs and arms, so the tow researches recommended to looking after the best for educational methods that used in our sport colleges in Iraq.
Productivity estimating of ready mixed concrete batch plant is an essential tool for the successful completion of the construction process. It is defined as the output of the system per unit of time. Usually, the actual productivity values of construction equipment in the site are not consistent with the nominal ones. Therefore, it is necessary to make a comprehensive evaluation of the nominal productivity of equipment concerning the effected factors and then re-evaluate them according to the actual values.
In this paper, the forecasting system was employed is an Artificial Intelligence technique (AI). It is represented by Artificial Neural Network (ANN) to establish the predicted model to estimate wet ready mixe
... Show MoreThis paper aims to study the second-order geometric nonlinearity effects of P-Delta on the dynamic response of tall reinforced concrete buildings due to a wide range of earthquake ground motion forces, including minor earthquake up to moderate and strong earthquakes. The frequency domain dynamic analysis procedure was used for response assessment. Reinforced concrete building models with different heights up to 50 stories were analyzed. The finite element software ETABS (version 16.0.3) was used to analyze reinforced concrete building models.
The study reveals that the percentage increase in buildings' sway and drift due to P-Delta effects are nearly constant for specific building height irrespective of the seism
... Show MoreEnvironmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib
Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show MoreAs human societies grow, the problem of waste management becomes one of the pressing issues that need to be addressed. Recycling and reuse of waste are effective waste management measures that prevent pollution and conserve natural resources. In this study, the possibility of using glass waste as an alternative was used as a partial weight substitute for fine aggregates with replacement ratios of 10, 20, 30, and 40% by the weight, and formed into test models (15 cm * 15 cm ) cube and (15 cm * 30 cm) cylinder, then matured and tested their strength compression and tensile strength at the age of 7 and 28 days and compared with a reference or conventional concrete with a mixing ratio (1: 1.5: 3) as well as testing its worka
... Show MoreConcrete pavements are essential to modern infrastructure, but their low tensile and flexural strengths can cause cracking and shrinkage. This study evaluates fiber reinforcement with steel and carbon fibers in various combinations to improve rigid pavement performance. Six concrete mixes were tested: a control mix with no fiber, a mix with 1% steel fiber (SF1%), a mix with 1% carbon fiber (CF1%), and three hybrid mixes with 1% fiber content: 0.75% steel /0.25% carbon fiber (SF0.75CF0.25), 0.25% steel /0.75% carbon fiber (SF0.25CF0.75), and 0.5% steel /0.5% carbon fiber ((SF0.5CF0.5). Laboratory experiments including compressive, flexural, and splitting tensile strength tests were conducted at 7, 28, and 90 days, while Finite Element Analys
... Show More