An aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical inputs like wind speed, wind direction, visibility, and runway condition to determine the landing's feasibility. The connection between the fuzzy rules is shown in the plotted curves, which indicate the smoothness and absence of overlap of decision-making rules for various input scenarios. A study employing data from Baghdad International Airport found that the proposed fuzzy approach predicted landing feasibility with an outstanding more than 85% accuracy across 20 different real-world scenarios. This level of reliability demonstrates how well the system can assess varied weather and runway conditions and identify the best landing decisions.
This study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat
... Show MoreThis paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.
Finally, all algori
... Show MoreWith the increasing reliance on microgrids as flexible and sustainable solutions for energy distribution, securing decentralized electricity grids requires robust cybersecurity strategies tailored to microgrid-specific vulnerabilities. The research paper focuses on enhancing detection capabilities and response times in the face of coordinated cyber threats in microgrid systems by implementing advanced technologies, thereby supporting decentralized operations while maintaining robust system performance in the presence of attacks. It utilizes advanced power engineering techniques to strengthen cybersecurity in modern power grids. A real-world CPS testbed was utilized to simulate the smart grid environment and analyze the impact of cyberattack
... Show MoreA method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.
There is a set of economic factors that affect the rationalization of decisions on unexploited resources within the economic unit and here determines the problem of the search for the question of what economic factors cause the emergence of asymmetric costs, and aims to identify these factors in the costs of adjustment to resources, change in The size of the activity of the economic unit, the general trend of sales change in the previous period, and the economic level of the country. Rh measure the impact of these factors on economic unity, and taking into consideration the impact when formulating decisions.
Abstract:
If we neglect the value of historical fashions as a source of inspiration for
contemporary fashion designers we will neglect a treasure of original designs.
In neglecting such a treasure how could we then know what is original. Today
the most famous fashion designers are often inspired, in the outwardly from
and internal lines of their fashions, by fashion designed during the ages of the
past.
Designers can find such fashions in books of history and museums. But
the historical ages are not equal in the fertility of the originality and novelty of
their fashions. Thus the contemporary designer may not find the old designs
inspiring so he invents them.
The researcher was keen in this paper to inclu
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi