The Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depends greatly on the choice of base distribution. The higher the value of α (a concentration parameter), the better the clustering and noise suppression. The distributional behavior of data can be approximated rigorously by the biorthogonal wavelet analysis. Since the Dirichlet process is an interesting object of observation, we computed it for a few wavelet bases and among them, we found that the Cohen-Daubechies-Feauveau (CDF) basis is the one that captures the Dirichlet process most accurately. Our results may be useful in applying the Dirichlet process to real-world experimental data and in developing Bayesian non-parametric methods.
The aim of this paper is to shed the light on the concepts of agency theory by measuring one of the problems that arise from it, which is represented by earnings management (EM) practices. The research problem is demonstrated by the failure of some Iraqi banks and their subsequent placement under the supervision of the Central Bank of Iraq, which was attributed, in part, to the inadequacy of the agency model in protecting stakeholders in shareholding institutions, as well as EM, pushed professional institutions to adopt the corporate governance model as a method to regulate the problem of accounting information asymmetry between the parties to the agency. We are using the Beneish M-score model and the financial analysis equations in
... Show MoreAbstract
This study aimed to identify the business risks using the approach of the client strategy analysis in order to improve the efficiency and effectiveness of the audit process. A study of business risks and their impact on the efficiency and effectiveness of the audit process has been performed to establish a cognitive framework of the main objective of this study, in which the descriptive analytical method has been adopted. A survey questionnaire has been developed and distributed to the targeted group of audit firms which have profession license from the Auditors Association in the Gaza Strip (63 offices). A hundred questionnaires have been distributed to the study sample of which, a total of 84 where answered and
... Show MoreThe aim of this study was to investigate the effect of operating variables on, the percentage of removed sludge (PSR) obtained during re-refining of 15W-40 Al-Durra spent lubricant by solvent extraction-flocculation treatment method. Binary solvents were used such as, Heavy Naphtha (H.N.): MEK (N:MEK), H.N. : n-Butanol (N:n-But), and H.N. : Iso-Butanol (N:Iso:But). The studied variables were mixing speed (300-900, rpm), mixing time (15-60, min), and operating temperature (2540, oC). This study showed that the studied operating variables have effects where, increasing the mixing time up to 45 min for H.N.: MEK, H.N.: n-Butanol and 30 min for H.N.: Iso-Butanol increased the PSR, after that percentage was decreased; increasing t
... Show MoreSteel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm
Abstract :
The research aims to Estimate the Strength of Strategic Innovation application in terms of application strength , and on the overall level in number of Iraqi Industrial business organizations . After wards determine whether their is differerences among those organizations in application process for the dimensions , and for the overall process .
The Research revealed number of conclusions including that the process of strategic innovation is applied in a good Level , and demonstrates the desier of the industrial companies Leaders to Launch beyond the familiar products , and to provide new products that
... Show MoreThis research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods
This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram, and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods.
Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show More