The Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depends greatly on the choice of base distribution. The higher the value of α (a concentration parameter), the better the clustering and noise suppression. The distributional behavior of data can be approximated rigorously by the biorthogonal wavelet analysis. Since the Dirichlet process is an interesting object of observation, we computed it for a few wavelet bases and among them, we found that the Cohen-Daubechies-Feauveau (CDF) basis is the one that captures the Dirichlet process most accurately. Our results may be useful in applying the Dirichlet process to real-world experimental data and in developing Bayesian non-parametric methods.
Toxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic perform
... Show MoreToxic substances have been released into water supplies in recent decades because of fast industrialization and population growth. Fenton electrochemical process has been addressed to treat wastewater which is very popular because of its high efficiency and straightforward design. One of the advanced oxidation processes (AOPs) is electro-Fenton (EF) process, and electrode material significantly affects its performance. Nickel foam was chosen as the source of electro-generated hydrogen peroxide (H2O2) due to its good characteristics. In the present study, the main goals were to explore the effects of operation parameters (FeSO4 concentration, current density, and electrolysis time) on the catalytic performance that was optimized by r
... Show MoreENGLISH
Original Research Paper Mathematics 1-Introduction : In the light of the progress and rapid development of the applications of research in applications fields, the need to rely on scientific tools and cleaner for data processing has become a prominent role in the resolution of decisions in industrial and service institutions according to the real need of these methods to make them scientific methods to solve the problem Making decisions for the purpose of making the departments succeed in performing their planning and executive tasks. Therefore, we found it necessary to know the transport model in general and to use statistical methods to reach the optimal solution with the lowest possible costs in particular. And you know The Transportatio
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreFingerprint recognition is one among oldest procedures of identification. An important step in automatic fingerprint matching is to mechanically and dependably extract features. The quality of the input fingerprint image has a major impact on the performance of a feature extraction algorithm. The target of this paper is to present a fingerprint recognition technique that utilizes local features for fingerprint representation and matching. The adopted local features have determined: (i) the energy of Haar wavelet subbands, (ii) the normalized of Haar wavelet subbands. Experiments have been made on three completely different sets of features which are used when partitioning the fingerprint into overlapped blocks. Experiments are conducted on
... Show MoreIn this research want to make analysis for some indicators and it's classifications that related with the teaching process and the scientific level for graduate studies in the university by using analysis of variance for ranked data for repeated measurements instead of the ordinary analysis of variance . We reach many conclusions for the
important classifications for each indicator that has affected on the teaching process. &nb
... Show More
Public relations are amongst the social sciences that rely on scientific methods in achieving new knowledge or resolving existing problems by means of its scientific researches that are often applied and require a classification in terms of their results’ analysis. It also requires subtle statistical processes whether in constructing their material or in analyzing and interpreting their results.
This research seeks to identify the relation between public relations and statistics, and the significance a researcher or practitioner in the domain of public relations should assign to statistics being one of the important criteria in identifying the accuracy and object
... Show More