a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that synthesized Au NPs were spherical with a mean size of particles, ranging from 25 nm to 30 nm. At high laser pulse energy, the intensity of all emission peaks in the air at atmospheric pressure was considerably greater. Finally, variations in the operating temperature associated with the NH3 gas sensor, created from the samples that have been prepared on the sensitivity of the sensor and response time have been evaluated, the maximal sensitivity is nearly 41% concerning Au NPs that have been ablated via laser energy (E) 400 mJ on the porous silicon of the NH3 gas.
Density functional theory (DFT) with B3LYP level and 6-311G[Formula: see text] basis sets for light atoms like N and O and SDD basis sets for heavy atoms like Sn is used to examine the interaction of tin dioxide nanocrystals with nitrogen dioxide as a function of temperature from 273[Formula: see text]K to 373[Formula: see text]K through a Gaussian 09W software program. Gibbs free energy, enthalpy, and entropy of activation and reaction are calculated. The situation of transition of SnO2 clusters toward nitrogen dioxide is investigated. According to the findings, the activation energy of SnO2 clusters with nitrogen dioxide increases as the temperature rises (in negative value). Gauss view 0
... Show MoreNH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreRemote surveying of unknown bound geometries, such as the mapping of underground water supplies and tunnels, remains a challenging task. The obstacles and absorption in media make the long-distance telecommunication and localization process inefficient due to mobile sensors’ power limitations. This work develops a new short-range sequential localization approach to reduce the required amount of signal transmission power. The developed algorithm is based on a sequential localization process that can utilize a multitude of randomly distributed wireless sensors while only employing several anchors in the process. Time delay elliptic and frequency range techniques are employed in developing the proposed algebraic closed-form solution.
... Show MoreDrones are highly autonomous, remote‐controlled platforms capable of performing a variety of tasks in diverse environments. A digital twin (DT) is a virtual replica of a physical system. The integration of DT with drones gives the opportunity to manipulate the drone during a mission. In this paper, the architecture of DT is presented in order to explain how the physical environment can be represented. The techniques via which drones are collecting the necessary information for DT are compared as a next step to introduce the main methods that have been applied in DT progress by drones. The findings of this research indicated that the process of incorporating DTs into drones will result in the advanc
High smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show MoreIn this work the structural, optical and sensitive properties of Cerium - Copper oxide thin film prepared on silicon and glass substrate by the spray pyrolysis technique at a temperature of (200, 250, 300 °C). The results of (XRD) showed that all the prepared films were of a polycrystalline installation and monoclinic crystal structure with a preferable directions was (111) of CuO. Optical characteristics observed that the absorption coefficient has values for all the prepared CuO: Ce% (104 cm-1) in the visible spectrum, indicating that all the thin films prepared have a direct energy gap. Been fabrication of gas sensors of (CuO: Ce %) within optimum preparation conditions and study sensitivity properties were examined her exposed to ni
... Show MoreIn this work the interaction of plasma jet with water and hydrogen peroxide liquids used for assisted teeth bleaching by plasma jet had been study. A homemade plasma jet system was used. The plasma jet supply by 15 W electrical power generated by high voltage power supply of 9.6 kV peak to peak and frequency of 33 kHz .this power supply generate high electric field on electrodes that would be enough to ionize the argon gas. Some important agents were study such as the effect of the Ar gas flow rates on the length of the plasma jet, the influence of plasma jet on some properties of water and two hydrogen peroxide concentrations 25 % and 30 % like pH, conductivity and liquid temperature for different exposure time. The liquids temperature
... Show MoreObjective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further
... Show More
