Preferred Language
Articles
/
RBY-uYoBVTCNdQwCtKTY
RETRACTED ARTICLE: The impact of fear on a stage structure prey–predator system with anti-predator behavior

A prey-predator interaction model has been suggested in which the population of a predator consists of a two-stage structure. Modified Holling's disk equation is used to describe the consumption of the prey so that it involves the additional source of food for the predator. The fear function is imposed on prey. It is supposed that the prey exhibits anti-predator behavior and may kill the adult predator due to their struggle against predation. The proposed model is investigated for existence, uniqueness, and boundedness. After determining all feasible equilibrium points, the local stability analyses are performed. In addition, global stability analyses for this model using the Lyapunov method are investigated. The chance of occurrence of local bifurcation including Hopf bifurcation is investigated. Furthermore, to complete our study, the global dynamics of the model are investigated and the set of control parameters is set by conducting numerical simulations.

Scopus Clarivate Crossref
Publication Date
Fri Nov 24 2023
Journal Name
Iraqi Journal Of Science
Modeling and Stability of Lotka-Volterra Prey-Predator System Involving Infectious Disease in Each Population

In this paper, a mathematical model consisting of the prey- predator model with disease in both the population is proposed and analyzed. The existence, uniqueness and boundedness of the solution are discussed. The existences and the stability analysis of all possible equilibrium points are studied. Numerical simulation is carried out to investigate the global dynamical behavior of the system.

View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Mathematical Biology And Neuroscience
Scopus Crossref
View Publication
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Basic And Applied Sciences
A reliable iterative method for solving the epidemic model and the prey and predator problems

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a

... Show More
Crossref (4)
Crossref
View Publication
Publication Date
Wed Jun 03 2020
Journal Name
Journal Of Applied Mathematics
Order and Chaos in a Prey-Predator Model Incorporating Refuge, Disease, and Harvesting

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect

... Show More
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Dynamics of Sokol-Howell Prey-Predator Model Involving Strong Allee Effect

In this paper,  a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results

Scopus (6)
Scopus Crossref
View Publication
Publication Date
Tue Mar 26 2019
Journal Name
International Journal Of Mathematics And Mathematical Sciences
Stability and Bifurcation of a Prey-Predator-Scavenger Model in the Existence of Toxicant and Harvesting

In this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.

Scopus (24)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
The dynamics of a delayed ecological model with predator refuge and cannibalism

This study has contributed to understanding a delayed prey-predator system involving cannibalism. The system is assumed to use the Holling type II functional response to describe the consuming process and incorporates the predator’s refuge against the cannibalism process. The characteristics of the solution are discussed. All potential equilibrium points have been identified. All equilibrium points’ local stability analyses for all time delay values are investigated. The system exhibits a Hopf bifurcation at the coexistence equilibrium, which is further demonstrated. The center manifold and normal form theorems for functional differential equations are then used to establish the direction of Hopf bifurcation and the stability of the per

... Show More
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
The Impact of Fear and Prey Refuge on the Dynamics of the Food Web Involving Scavenger

        In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical

... Show More
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Wed Jan 08 2020
Journal Name
International Journal Of Advanced Science And Technology
The local stability of an eco-epidemiological model involving a harvesting on predator population

In this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.

Scopus
View Publication
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Southwest Jiaotong University
The Dynamics of an Eco-Epidemiological Model with Allee Effect and Harvesting in the Predator

The aim of this study was to propose and evaluate an eco-epidemiological model with Allee effect and nonlinear harvesting in predators. It was assumed that there is an SI-type of disease in prey, and only portion of the prey would be attacked by the predator due to the fleeing of the remainder of the prey to a safe area. It was also assumed that the predator consumed the prey according to modified Holling type-II functional response. All possible equilibrium points were determined, and the local and global stabilities were investigated. The possibility of occurrence of local bifurcation was also studied. Numerical simulation was used to further evaluate the global dynamics and the effects of varying parameters on the asymptotic behavior of

... Show More
Crossref