Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.
Background: Enforcement of sustainable and green chemistry protocols has seen colossal surge in recent times, the development of an effective, eco-friendly, simple and novel methodologies towards the synthesis of valuable synthetic scaffolds and drug intermediates. Recent advances in technology have now a more efficient means of heating reactions that made microwave energy. Efforts to synthesize novel heterocyclic molecules of biological importance are in continuation. Microwave irradiation is well known to promote the synthesis of a variety of organic and inorganic compounds. The aim of current study was to conceivea mild base mediated preparation of novel Schiff base of 2-Acetylpheno with trimethoprim drug (H2TPBD) and its complexes w
... Show MoreThe measurements and tests of the samples conducted in the laboratories of the College of Agriculture included isolating bio-fertilizers and testing the efficiency of isolates that fix atmospheric nitrogen and solubilize phosphorous compounds. Bacteria were isolated and identified from the rhizosphere soils of different plants collected from various agricultural areas. A total of 74 bacterial isolates were obtained based on the phenotypic characteristics of the developing colonies, as well as biochemical and microscopic traits. The results of isolation and identification showed that among the 74 bacterial isolates, there were 15 isolates of A. chroococcum, 13 of Az. lipoferum, 13 of B. megaterium, 10 of P. putida, 10 of Actinomycetes, and n
... Show MoreThe study seeks to identify e-governance requirements in human resources management, which are (administrative requirements, technical, human, financial, and security) which is a new style differs from the traditional management pattern, where work depends on multiple forms and methods of Tools, (e. g. computers and various electronic software), by relying on powerful information systems that help to make management decisions as quickly and less effortless and less expensive to keep up with the tremendous technological advancements in the field of information and communication technology revolution.
The sample included 132 Person who constitute a position (Director General, assistant Director General, section managers and d
... Show More
Abstract
The resources-based introduction in the study of business organizations is increasingly dealing in the study of the human capacities and the best ways to develop them and changing the resources of the organization to be essential and competent to face the business challenges. Today’s organizations need crucial practices to face those challenges and the influences of those practices which take into consideration the importance of developing the entrepreneurship inside the organization. Those practices are called “High Performance Work Systems” which is denoted by “HPWS” and defined as the practices of human resources management which help in acquiring func
... Show MoreThe current study included the separation of three alkaloid compounds from Anastatica Hierochuntica and studied the effect of the these compounds on cancerous cells , specifically liver cancer it was found that compound number one is the most influential or inhibiting at 50 percent followed by compound number three when using concentration of 400 μg/mL.
Adenosine deaminase (ADA; Ec: 3.5.4.4), 5´- Nucleotidase (5´– NT; Ec: 3.1.3.5), and AMP – amino hydrolase (AMP – deaminase AMPDA; Ec: 3.5.4.6) activities were measured in sera of ovarian cancer patients before surgery, and after chemotherapy. The results indicated that ADA specific activity increased significantly (P<0.05), while 5´-NT and AMPDA specific activity decreased significantly (P<0.05) in ovarian cancer patients before surgery in comparison with those of their corresponding control women and benign tumors groups. When the activities of these enzymes were measured after chemotherapy, a significant decrease (P<0.05) in ADA activity, and a significant increase (P<0.05) in 5´- NT and AMPDA activities w
... Show MoreMost studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for