Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.
Breast cancer is the most commonly diagnosed cancer and remains one of the main reasons of cancer-related mortality in women worldwide. KRAS variant rs61764370 (T>G) is associated with an increased risk of occurrence of many cancers, Here The case-control study was accomplished on 135 women including 45 women with breast cancer patients, 45 women with benign breast lesions and 45 healthy women to analyze the association of KRAS variant rs (61764370 T>G) with breast cancer. LCS 6 variant in KRAS gene was amplified by using specific primers, then genotype was detected after sequencing the PCR products. The results showed that the genotype and allele frequency of TT and GT allele of KRAS
... Show MoreRecent population studies have shown that placenta accreta spectrum (PAS) disorders remain undiagnosed before delivery in half to two-thirds of cases. In a series from specialist diagnostic units in the USA, around one-third of cases of PAS disorders were not diagnosed during pregnancy. Maternal
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreHuman cytomegalovirus (CMV) is the globally highly prevalent herpesvirus worldwide. CMV infects populations of all ages according to the Center for Disease Control and Prevention (CDC) and World Health Organization (WHO). CMV infections remain the most common viral complication potentially multiple in humans and are a major cause of congenital normality in women, which is why they are critical for diagnosis in several times when it happens during pregnancy. Pregnant women with CMV infection can be in charge of abortion or congenital expandaedby. This study involves the collection a total of (90) samples taken from each aborted and pregnant woman (70 with abortion cases and 20 of pregnant without history of abortion as control subjects) r
... Show MoreBreast mass is by far the most important clinical problem that concerns the breast today. This study was carried out to evaluate diode laser as a cutting tool in breast mass excision and as a hemostatic tool for coagulation during surgery. Using 810 nm diode laser with optical fiber 600μm in diameter of conical tip, udder (cow's breast) tissue, and three female patients (mean age of 35.5 y with clinically palpable breast mass) had been used in this study. The patients were followed up regularly postoperatively. In preliminary work on udder tissue, the power needed for cutting and excision was 15W (power density= 5.3 kW/cm2). The time consumed for excision of a piece of udder tissue, 40×10×3 mm in dimensions was 5 min. The depth range
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T