Preferred Language
Articles
/
R4ZTBIYBIXToZYALa3dJ
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
...Show More Authors

Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.

Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 25 2023
Journal Name
Journal Of Periodontal Research
Salivary E‐cadherin as a biomarker for diagnosis and predicting grade of periodontitis
...Show More Authors
Abstract<sec><title>Objectives

To determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.

Background

E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.

Materials and Methods

A total of 63 patients with periodontitis (case) and 35

... Show More
View Publication
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Proceedings Of The 10th International Joint Conference On Computational Intelligence
Deep Classifier Structures with Autoencoder for Higher-level Feature Extraction
...Show More Authors

View Publication
Crossref (2)
Scopus Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering &amp; Technology
Modified Strut Effectiveness Factor for FRP-Reinforced Concrete Deep Beams
...Show More Authors

A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials &amp; Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (17)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (32)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Fri Mar 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Asphaltenes Removal on the Kinetics of Iraqi Reduced Crude Oil Hydrotreating
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Scenarios for investment of proposed marshes and requirements for success:a case study in the Marshlands of maysan
...Show More Authors

  The research aims to presenting a number of scenarios for the investment of the marshes. The problem of research problem was that there is no in-depth analysis of the marshes  environment. The traditional methods of  the environmental analysis are insufficient. The research community is represented by the decision makers in Maysan Governorate. The research led to proposing of three scenarios with statement  the requirements for the success of each one. The most important conclusions are that the three proposed scenarios for marshes investment depend on the availability of the required volunteers for each scenario. The higher the availability of the requirements, the more optimistic the scenario becomes. If t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 03 2024
Journal Name
Buildings
Reduced Volume Approach to Evaluate Biaxial Bubbled Slabs’ Resistance to Punching Shear
...Show More Authors

The bubbled slab, a type of reinforced concrete (RC) slab with plastic voids, is an innovative design that employs a biaxial distribution of voiding formers within the slab to reduce the slab’s self-weight while preserving a load-carrying capacity that is approximately comparable to that of solid slabs. This paper presents a new approach for figuring out the effective critical shear perimeter of voided slabs using the reduced-volume concept of concrete. This approach aims to reduce the coefficient of variation of the current design standards, namely the ACI 318-19 and Eurocode 2, for assessing the slabs’ resistance to punching shear. Our experimental program investigated the impact of voiding former patterns and the location of

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref