Preferred Language
Articles
/
R4ZTBIYBIXToZYALa3dJ
Reduced hardware requirements of deep neural network for breast cancer diagnosis
...Show More Authors

Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (16)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Aug 21 2022
Journal Name
International Journal Of Health Sciences
Effect of x- ray on the treatment of breast cancer combined with amygdalin and doxorubicin separately
...Show More Authors

Background: Radiation therapy has the ability to destroy healthy cells in addition to cancer cells in the area being treated. However, when radiation combines with doxorubicin, it becomes more effective on breast cancer treatment. Objective: This study aims to clarify the effect of X-ray from LINAC combined with amygdalin and doxorubicin on breast cancer treatment, and the possibility of using amygdalin with X-ray instead of doxorubicin for the breast cancer treatment. Method: Two cell lines were used in this study, the first one was MCF-7 cell line and second one was WRL- 68 normal cell line. These cells were preserved in liquid nitrogen, prepared, developed and tested in the (place). The effect of three x-ray doses combined with a

... Show More
View Publication
Crossref
Publication Date
Fri Feb 01 2019
Journal Name
Environmental Technology & Innovation
The use of Artificial Neural Network (ANN) for modeling of Cu (II) ion removal from aqueous solution by flotation and sorptive flotation process
...Show More Authors

View Publication
Scopus (25)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Mon Oct 01 2018
Journal Name
Conference: First International Conference On Water Resources
Modeling BOD of the Effluent from Abu-Ghraib Diary Factory using Artificial Neural Network October 2018
...Show More Authors

The proper operation, and control of wastewater treatment plants, is receiving an increasing attention, because of the rising concern about environmental issues. In this research a mathematical model was developed to predict biochemical oxygen demand in the waste water discharged from Abu-Ghraib diary factory in Baghdad using Artificial Neural Network (ANN).In this study the best selection of the input data were selected from the recorded parameters of the wastewater from the factory. The ANN model developed was built up with the following parameters: Chemical oxygen demand, Dissolved oxygen, pH, Total dissolved solids, Total suspended solids, Sulphate, Phosphate, Chloride and Influent flow rate. The results indicated that the constructed A

... Show More
Publication Date
Mon Jan 01 2024
Journal Name
Itm Web Of Conferences
Embedded Neural Network like PID Water Heating Controller Implementing Cycle by Cycle Power Control Scheme
...Show More Authors

This paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics

... Show More
View Publication
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Medicinal And Chemical Sciences
The Role of Monoamine Oxidase and Atherogenic Index in Newly Diagnosed and Tamoxifen Treated Women with Breast Cancer Disease
...Show More Authors

Breast cancer (BC) is one of the most frequently observed malignancy in females worldwide. Today, tamoxifen (TAM) is considered as the highly effective therapy for treatment of breast tumors. Oxidative stress has implicated strongly in the pathophysiology of malignancies. This study aimed to investigate the changes in the levels of oxidants and antioxidants in patients with newly diagnosed and TAM-treated BC. Sixty newly diagnosed and 60 TAM-treated women with BC and 50 healthy volunteers were included in this study. Parameters including total oxidant capacity (TOC), total antioxidant capacity (TAC), and catalase (CAT) activity were determined before and after treatment with TAM. The serum levels of TOC and oxidative stress index (OSI) were

... Show More
View Publication Preview PDF
Scopus (5)
Scopus
Publication Date
Mon Aug 01 2022
Journal Name
Hiv Nursing
The Influence of Some Vitamins and Biochemical Parameters on Iraqi Females’ Patients with Malignant Breast Cancer"
...Show More Authors

The Influence of Some Vitamins and Biochemical Parameters on Iraqi Females’ Patients with Malignant Breast Cancer"

Preview PDF
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Cytotoxic Activity of Ephedra alata Extracts on Human Lymphocytes and Breast Cancer Cell Line in Vitro
...Show More Authors

     This study was conducted to use the local Ephedra alata plant as a model for extracting and detecting alkaloids in the stem of plant (alkaloids-rich extract and crude extract). Different extraction procedures were adopted for qualitative as well as the quantitative examination of the alkaloid extracts, as well as plant crude extract, the best methods for the extraction of the plant materials were applied. Simple, fast and accurate methods like TLC (thin layer chromatography) and HPLC (High-performance liquid chromatography), were used for the identification of the alkaloids (ephedrine) in different extracts of stems E. alata stems. Ephedrine alkaloid was detected in each alkaloids-rich and crude extrac

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Testing the cytotoxic potential of biosynthesized nanoparticles using Conocarpus erectus Leaves against human breast cancer cells
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref