Identifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration on each subsystem to futher reduce the hardware requirements. The DNN was designed using a system generator and implemented using very hardware description language (VHDL). The system achievments outcomes the superior’s accuracy rate of approximately 99.6 percent in distinguishing bengin from malignant tissue. Also, the hardware resources were reduced by 30 percent from works of literature with an error rate of 7e-4 when using the Kintex-7 xc7k325t-3fbg676 board.
Interleukin-33 [IL-33] is a specific ligand for the ST2 receptor, and a member of the
IL-1 family. It is a dual-function protein that acts both as an extracellular alarmin cytokine,
and an as an intracellular nuclear factor participates in maintaining barrier function by
regulating gene expression of IL-33 modulating tumor growth and anti-tumor immunity in
cancer patients. The present study aimed to investigate the role of IL-33 serum level and gene
polymorphism in Iraqi women with breast cancer. Materials and methods: Blood samples
were collected from 66 Iraqi patient women diagnosed with breast cancer, which were divided
into two groups: pre-treatment [PT] and under treatment with chemotherapy [UTC] patients in
STAG proteins, which are part of the cohesin complex and encoded by the STAG genes, are known as Irr1/Scc3 in yeast and as SA/STAG/stromalin in mammals. There are more variants as there are alternate splice sites, maybe three open reading frames (ORFs) code for three main proteins, including: SA1 (STAG1), SA2 (STAG2) and SA3 (STAG3). The cohesin protein complex has various essential roles in eukaryotic cell biology. This study compared the expression of the STAG1 gene in four different breast cancer cell lines, including: MCF-7, T-47D, MDA-MB-468, and MDA-MB-231 and normal breast tissue. RNA was extracted from these cell lines and mRNA was converted to cDNA, and then expression of the STAG1 gene was quantified by three sets of specific prim
... Show MoreAngiogenesis is important for tissue during normal physiological processes as well as in a number of diseases, including cancer. Drug resistance is one of the largest difficulties to antiangiogenesis therapy. Due to their lower cytotoxicity and stronger pharmacological advantage, phytochemical anticancer medications have a number of advantages over chemical chemotherapeutic drugs. In the current study, the effectiveness of AuNPs, AuNPs-GAL, and free galangin as an antiangiogenesis agent was evaluated. Different physicochemical and molecular approaches have been used including the characterization, cytotoxicity, scratch wound healing assay, and gene expression of VEGF and ERKI in MCF-7 and MDA-MB-231 human breast cancer cell line. Re
... Show MoreIn recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the
... Show MoreA model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreBreast cancer is the most prevalent malignancy among women worldwide, in Iraq it ranks the first among the population and the leading cause of cancer related female mortality. This study is designed to investigate the correlations between serum and tissue markers in order to clarify their role in progression or regression breast cancer. Tumor Markers are groups of substances, mainly proteins, produced from cancer cell or from other cells in the body in response to tumor. The study was carried out from April 2018 to April 2019 with total number of 60 breast cancer women. The blood samples were collected from breast cancer women in postoperative and pretherapeutic who attended teaching oncology hospital of the medical city in Baghdad and
... Show MoreFLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2) was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin) for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinoma
... Show MoreThe study involved 120 women, who were distributed into two groups of breast tumor patients (30 malignant and 30 benign) and a group of controls (60 women). The patients were referred to the Center for Early Detection of Breast Tumor at Al-Alwayia Hospital for Gynecology and Obstetrics (Baghdad) during the period June-December 2011. They were investigated for the frequency of ABO blood group phenotypes, menopausal status, oral contraceptive use, body mass index and family history of breast cancer or other cancers. The results demonstrated that 60.0% of malignant cases clustered after the age 50 years, while it was 20.0% in benign cases. Fifty percent of malignant breast tumor patients reached menopause, while in benign cases, the corresp
... Show More
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show More