Most heuristic search method's performances are dependent on parameter choices. These parameter settings govern how new candidate solutions are generated and then applied by the algorithm. They essentially play a key role in determining the quality of the solution obtained and the efficiency of the search. Their fine-tuning techniques are still an on-going research area. Differential Evolution (DE) algorithm is a very powerful optimization method and has become popular in many fields. Based on the prolonged research work on DE, it is now arguably one of the most outstanding stochastic optimization algorithms for real-parameter optimization. One reason for its popularity is its widely appreciated property of having only a small number of parameters to tune. This paper presents a detailed review of DE parameter tuning with a table compromised a recommended guidelines for these parameters, along with a full description of the basic DE algorithm and its corresponding operators, overlooked by previous studies. It is aimed at practitioners to help them achieve better results when adopting DE as an optimization method for their problems with less time and effort. Moreover, an experimental study has been conducted over fifteen test problems and the results obtained prove the reliability of the setting values.
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
Market share is a major indication of business success. Understanding the impact of numerous economic factors on market share is critical to a company’s success. In this study, we examine the market shares of two manufacturers in a duopoly economy and present an optimal pricing approach for increasing a company’s market share. We create two numerical models based on ordinary differential equations to investigate market success. The first model takes into account quantity demand and investment in R&D, whereas the second model investigates a more realistic relationship between quantity demand and pricing.
This paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.
We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.