The demand for electronic -passport photo ( frontal facial) images has grown rapidly. It now extends to Electronic Government (E-Gov) applications such as social benefits driver's license, e-passport, and e-visa . With the COVID 19 (coronavirus disease ), facial (formal) images are becoming more widely used and spreading quickly, and are being used to verify an individual's identity, but unfortunately that comes with insignificant details of constant background which leads to huge byte consumption that affects storage space and transmission, where the optimal solution that aims to curtail data size using compression techniques that based on exploiting image redundancy(s) efficiently.
This paper develops a fuzzy multi-objective model for solving aggregate production planning problems that contain multiple products and multiple periods in uncertain environments. We seek to minimize total production cost and total labor cost. We adopted a new method that utilizes a Zimmermans approach to determine the tolerance and aspiration levels. The actual performance of an industrial company was used to prove the feasibility of the proposed model. The proposed model shows that the method is useful, generalizable, and can be applied to APP problems with other parameters.
The present study aimed at examining the factors that affect the choice of A major among a sample of BA fe(male) students at the levels 3-8 in King Abdulaziz University (KAU), in Jeddah, Saudi Arabia. To meet this objective, a descriptive survey method was used together with a questionnaire that consisted of 4 axes to answer the central question: What are the factors affecting the choice of a major at the university? Results have shown that the item that measured the students’ ability to choose the major ranked (First); it was concerned with the effect on the students' choice of his/her major in the university. On the last position and with respect to this effect came the professional tendencies and desires. Results have also shown tha
... Show MoreMost Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mo
... Show MoreObesity is an escalating health problem in developing countries. One to ten children worldwide are overweight in a report showed by the International Obesity Task Force. Ghrelin, orexigenic peptide, has 28 amino acids, it is considered the greatest remarkable promotion in the last two decades for understanding the physiological changes of action regulating food intake and hunger. Obestatin is a 23-amino acid peptide nearly connected to ghrelin that secures from substitutio
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show More