The petrophysical analysis is significant to determine the parameters controlling the production wells and the reservoir quality. In this study, Using Interactive petrophysics software to analyze the petrophysical parameters of five wells penetrated the Zubair reservoir in the Abu-Amood field to evaluate a reservoir and search for hydrocarbon zones. The available logs data such as density, sonic, gamma ray, SP, neutron, and resistivity logs for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5 were used to determine the reservoir properties in Zubair reservoir. The density-neutron and neutron-sonic cross plots, which appear as lines with porosity scale ticks, are used to distinguish between the three main lithologies of sandstone, limestone, and dolomite. The corrected gamma ray log was used in all wells to determine the shale volume. Neutron-sonic log was used to calculate porosity at the reservoir unit while sonic log was employed to estimate the porosity at poor hole conditions and (non- reservoir units). Furthermore, the Indonesia model was used to calculate water saturation in Zubair reservoir and compared with the Archie model. Finally, Flow zone indicator method was used for permeability evaluation. The results show that the Zubair reservoir is primarily consists of sandstone, shale with compacted limestone, which was improved by the cuttings description report. The core porosity was validated in AMM-1, AMM-2, AMM-3and AMM-5 wells. Indonesia equation provides an optimum estimation in shaly sand zones since the Archie model takes the matrix conductive and the fluid conductivity into account. Four hydraulic flow units produced from reservoir quality index against normalized porosity index cross plot and obtained Four equations from porosity- permeability relationship of core data. The general interpretation presented that the most of hydrocarbons are located in depth (3332.8 m to 3415.8 m) which represents the best layer in Zubair reservoir, the properties of this layer in well AMM-1better than in well AMM-2. Finally, the layer from 3574.8 m to3638.3 m supposed to be water layer rather than hydrocarbon layer.
Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show MoreAbstract
The purpose of our study was to develop Dabigatran Etexilate loaded nanostructured lipid carriers (DE-NLCs) using Glyceryl monostearate and Oleic acid as lipid matrix, and to estimate the potential of the developed delivery system to improve oral absorption of low bioavailability drug, different Oleic acid ratios effect on particle size, zeta potential, entrapment efficiency and loading capacity were studied, the optimized DE-NLCs shows a particle size within the nanorange, the zeta potential (ZP) was 33.81±0.73mV with drug entrapment efficiency (EE%) of 92.42±2.31% and a loading capacity (DL%) of 7.69±0.17%. about 92% of drug was released in 24hr in a controlled manner, the ex-vivo intestinal p
... Show MoreA specific, sensitive and new simple method was used for the determination of methyldopa in pure and pharmaceutical formulations by using continuous flow injection analysis. This method is based on formation of ion pair compound between methyldopa and potassium hexacyanoferrate in acidic medium to obtain a yellow precipitate complex using long distance chasing photometer (NAG-ADF-300-2). The linear range for calibration graph was 0.05-35 mmol/L for cell A and 0.05-25 mmol/L for cell B, and LOD 1.4292 µg /200 µL for both cells with correlation coefficient (r) 0.9981 for cell A and 0.9994 for cell B, RSD% was lower than 0.5 % for n=8 for. The results were compared with classical method UV-Spectrophotometric at λ max=280 nm and turbi
... Show MoreThe study involved preparing a new compound by combining Schiff bases generated from compounds for antipyrine, including lanthanide ions (lanthanum, neodymium, erbium, gadolinium, and dysprosium). The preparation of the ligand from condensation reactions (4-antipyrinecarboxaldehyde with ethylene di-amine) at room temperature, and was characterization using spectroscopic and analytical studies ( FT-IR, UV-visible spectra, 1H-NMR, mass spectrometry, (C.H.N.O), thermogravimetric analysis (TGA), in addition to the magnetic susceptibility and conductivity measurement of the synthesis complexes, among the results we obtained from the tests, we showed that the ligand behaves with the (triple Valence) lanthanide ions, the multidentate
... Show MoreThis study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From
... Show MoreIn the present study, magnet silica-coated Ag2WO4/Ag2S nanocomposites (FOSOAWAS) were fabricated via a multistep method to address the drawbacks related to single photocatalysts (pure Ag2WO4 and pure Ag2S) and to clarify the significant influence of semiconductor heterojunction on the enhancement of visible-light-driven organic degradation. Different techniques were performed to investigate the elemental composition, morphology, magnetic and photoelectrochemical properties of the fabricated FOSOAWAS photocatalyst. The FOSOAWAS photocatalyst (1 g/L) exhibited excellent photodegradation efficiency (99.5%) against Congo red dye (CR = 20 ppm) after 140 min of visible-light illumination. This result confirmed the ability of the heterojunction be
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show MoreIn this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcin
This investigation reports application of a mesoporous nanomaterial based on dicationic ionic liquid bonded to amorphous silica, namely nano-N,N,N′,N′-tetramethyl-N-(silican-propyl)-N′-sulfo-ethane-1,2-diaminium chloride (nano-[TSPSED][Cl]2), as an extremely effectual and recoverable catalyst for the generation of bis(pyrazolyl)methanes and pyrazolopyranopyrimidines in solvent-free conditions. In both synthetic protocols, the performance of this catalyst was very useful and general and presented attractive features including short reaction times with high yields, reasonable turnover frequency and turnover number values, easy workup, high performance under mild conditions, recoverability and reusability in 5 consecutive runs without lo
... Show More