The shortage of irrigation water requires specific measures. One of these measures is the application of the rationing system (a period of irrigation followed by a period of drought). This system could have an effect on the behavior and properties of irrigation canals. So, studying rationing system on the irrigation canals is important both in civil engineering and water resources engineering, especially if these channels constructed with gypsum soil. This study includes the calculation of seepage velocity and water content in each cycle (10 days wetting and 10 days of drying). The model is built for this research contains four samples, two samples for untreated soil one of them exposed to a rationing system while the other two samples mixed with 10% cement also one of them exposed to rationing system. The paper reveals that the seepage velocity decreases about 90% when using cement as a treatment material. The seepage velocity and water content value changes with cycles of rationing, where the seepage velocity relatively increases and stabilizes in the case of untreated soil. In the case of the treatment soil, the seepage velocity is very little and reduces with each cycle of rationing. In the absence of a rationing system, the results are completely reversed.
This study focuses on synthesizing Niobium pentoxide (Nb2O5) thin films on silicon wafers and quartz substrates using DC reactive magnetron sputtering for NO2 gas sensors. The films undergo annealing in ambient air at 800 °C for 1 hr. Various characterization techniques, including X-ray diffraction (XRD), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), Hall effect measurements, and sensitivity measurements, are employed to evaluate the structural, morphological, electrical, and sensing properties of the Nb2O5 thin films. XRD analysis confirms the polycrystalline nature and hexagonal crystal structure of Nb2O5. The optical band gap values of the Nb2O5 thin films demonstrate a decrease from 4.74 to 3.73 eV
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show Moreتم في هذا البحث استخدام المحفز الجديد المصنع من تحميل دقائق البلاتين النانوية على سطح الصفائح النانوية للكرافين كمحفز ضوئي واختباره لدراسة التجزئة الضوئية لملوثات المياه وازالتها بشكل نهائي من مصادر المياه لما لها من تأثير سلبي على البيئة. حيث تم استخدام صبغة البروموفينول الأزرق كمثال على أحد الملوثات. في البدء تم التأكد من تحضير المحفز بالطريقة المستخدمة في طريقة العمل من خلال تشخيصه باستخدام عدد من ا
... Show MoreIn this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err
... Show MoreThe experiment was carried out in the wooden canopy in the green garden of Biology Department , College of Education for Pure Science – Ibn AL –Haitham, Baghdad University, during the growing season of 2012- 2013 , to study the influence of foliar application of three concentrations of zinc (0,50,75)mg. L ¯¹ with four concentrations of boron (0, 25, 50, 75) mg. L¯¹ and their interactions on some growth parameters of vegetative part of chickpea plant. The experiment was designed according to Randomized Completely Block Design(RCBD)with three replications, results indicated that:- 1- Foliar application of zinc and boron caused a significant increase in the averaye of dry weight for t
... Show MoreThis study investigates the impact of nonsurgical periodontal treatment (NSPT) on oral health-related quality of life (OHRQoL) in patients with periodontitis stages (S)2 and S3, and the factors associated with the prediction of patient-reported outcomes. Periodontitis patients (n = 68) with moderately deep periodontal pockets were recruited. Responses to the Oral Health Impact Profile (OHIP)-14 questionnaire and clinical parameters including plaque index, bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment loss (CAL) were recorded. All patients received supra- and subgingival professional mechanical plaque removal. All clinical parameters and questionnaire responses were recorded again 3 months after NSPT.
... Show MoreA study of the effects of the discharge (sputtering) currents (60-75 mA) and the thickness of copper target (0.037, 0.055 and 0.085 mm) on the prepared samples was performed. These samples were deposited with pure copper on a glass substrate using dc magnetron sputtering with a magnetic flux density of 150 gauss at the center. The effects of these two parameters were studied on the height, diameter, and size of the deposition copper grains as well as the roughness of surface samples using atomic force microscopy (AFM).The results of this study showed that it is possible to control the specifications of copper grains by changing the discharge currents and the thickness of the target material. The increase in discharge curre
... Show MoreHuman detection represents a main problem of interest when using video based monitoring. In this paper, artificial neural networks, namely multilayer perceptron (MLP) and radial basis function (RBF) are used to detect humans among different objects in a sequence of frames (images) using classification approach. The classification used is based on the shape of the object instead of depending on the contents of the frame. Initially, background subtraction is depended to extract objects of interest from the frame, then statistical and geometric information are obtained from vertical and horizontal projections of the objects that are detected to stand for the shape of the object. Next to this step, two ty
... Show More