Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pressure (0.1 to 20 MPa), temperature (23 to 70 °C), and salinity (0 to 20wt% NaCl) during CO2/water interfacial tension (IFT) measurements. Moreover, to mimic all potential scenarios several nanofluids at different and NPs load were used. IFT of CO2/nanofluid system was measured using the pendant drop method as it is convenient and flexible technique, particularly at the high-pressure and high-temperature condition. Experimentally, a nanofluid droplet is allowed to hang from one end of a dispensing needle with the presence of CO2 at the desired pressure and temperature. Regardless of the effects of CO2-pressure, temperature, and salt concentration on the IFT of the CO2/nanofluid system, NPs have shown a limited effect on IFT reduction. Remarkably, increased NPs concentration (from 0.01 to 0.05 wt%) can noticeably reduce IFT of the CO2-nanofluid system. However, no further reduction in IFT values was noticed when the NPs load was ≥ 0.05 wt%. Salinity, on the other hand, showed a dramatic impact on IFT and also on the ability of NPs to reduce IFT. Results showed that IFT increases with salinity particularly at relatively low pressures (≤ 5 MPa). Moreover, increased salinity can eliminate the effect of NPs on IFT. Interestingly, the initial NP size has no influence on the ability of NPs to reduce IFT. Consequently, the potential nanofluid-flooding processes during EOR have no negative effect on the later CO2-geosequestration projects.
This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
Introduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org
Since the beginning of mankind, the view of the sky was present through observations with the naked eye, then it developed with time, and the sciences and tools of astronomical observations developed, including photometric measurements, which reached a high degree of accuracy in describing various cosmic phenomena, including the study of galaxies, their composition, and the differences between them, and from here the importance of this study emerged, to determine the differences between two distinct types of classification of galaxies, which are normal and barred spiral galaxies, where two galaxies NGC 4662 and NGC 2649 were chosen that represented certain types of galaxies to study the morphological structure of the two galaxies, a
... Show MoreAbstract
Binary polymer blend was prepared by mechanical mixing method of unsaturated polyester resin with Nitrile Butadiene Rubber (NBR) with different weight ratios (0, 5, 10 and 15) % of (NBR). Tensile characteristics and wear rates of these blends were studied for all mixing ratios. The microstructure of fracture surfaces of the prepared samples were investigated by optical microscope. The results were showed that strain rates of the resin material increase after blending it with rubber while the ultimate tensile strength and Young’s modulus values of it will decrease. It is also noticed that the wear rate of resin decreases with increasing of (NBR) content.
Keywords:<
... Show MoreWe report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker human epidermal growth factor receptor 2 (HER2), and zinc(II) protoporphyrin IX (ZnPP) to combine imaging, targeting and therapy within one nanostructure. Colloidal PbS QDs were synthesized in aqueous solution with a nanocrystal diameter of ∼5 nm and photoluminescence emission in the near infrared wavelength range. The ZHER2:432 affibody, mutated through the introduction of two cysteine residues at the C-terminus (
This work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
This work represents development and implementation a programmable model for evaluating pumping technique and spectroscopic properties of solid state laser, as well as designing and constructing a suitable software program to simulate this techniques . A study of a new approach for Diode Pumped Solid State Laser systems (DPSSL), to build the optimum path technology and to manufacture a new solid state laser gain medium. From this model the threshold input power, output power optimum transmission, slop efficiency and available power were predicted. different systems configuration of diode pumped solid state laser for side pumping, end pump method using different shape type (rod,slab,disk) three main parameters are (energy transfer efficie
... Show More