The temperature control process of electric heating furnace (EHF) systems is a quite difficult and changeable task owing to non-linearity, time delay, time-varying parameters, and the harsh environment of the furnace. In this paper, a robust temperature control scheme for an EHF system is developed using an adaptive active disturbance rejection control (AADRC) technique with a continuous sliding-mode based component. First, a comprehensive dynamic model is established by using convection laws, in which the EHF systems can be characterized as an uncertain second order system. Second, an adaptive extended state observer (AESO) is utilized to estimate the states of the EHF system and total disturbances, in which the observer gains are updated online by a non-linear observer bandwidth, that is as a function of the observation errors. Moreover, with the help of disturbance estimation, a novel sliding manifold is constructed with parameters adaptively adjusted by a dynamic nonlinear bandwidth function to reduce the impact of high gain problems, especially noise-sensitivity. A continuous sliding-mode (CSM) based component is also designed to handle disturbance estimation errors. Third, the stability of the closed loop system, including the proposed controller and estimator, is mathematically proved using the Lyapunov theorem. Finally, the comparative simulation results show that the proposed method has superior robustness and temperature tracking performance.
In this study, pebble bed as an absorber and storage material was placed in a south facing, flat plate air-type solar collector at fixed tilt angle of (45°). The effect of this material and differ- ent parameters on collector efficiency has been investigated experimentally and
theoretically. Two operation modes were employed to study the performance of the solar air heater. An inte- grated mode of continuous operation of the system during the period of (11:00 am – 3:00 pm) and non-integrated mode in which the system stored the solar energy through the day then used the stored energy during the period of (3:00 pm – 8:00 pm). The results of parametric study in case of continuous operating showed that the maximum average temperatur
Abstract
In this work, diabetic glucose concentration level control under disturbing meal has been controlled using two set of advanced controllers. The first set is sliding mode controllers (classical and integral) and the second set is represented by optimal LQR controllers (classical and Min-, ax). Due to their characteristic features of disturbance rejection, both integral sliding mode controller and LQR Minmax controller are dedicated here for comparison. The Bergman minimal mathematical model was used to represent the dynamic behavior of a diabetic patient’s blood glucose concentration to the insulin injection. Simulations based on Matlab/Simulink, were performed to verify the performance of each controll
... Show MoreThis paper studies the adaptive coded modulation for coded OFDM system using punctured convolutional code, channel estimation, equalization and SNR estimation. The channel estimation based on block type pilot arrangement is performed by sending pilots at every sub carrier and using this estimation for a specific number of following symbols. Signal to noise ratio is estimated at receiver and then transmitted to the transmitter through feedback channel ,the transmitter according to the estimated SNR select appropriate modulation scheme and coding rate which maintain constant bit error rate
lower than the requested BER. Simulation results show that better performance is confirmed for target bit error rate (BER) of (10-3) as compared to c
ABSTRUCT
This research aims at examining the expected gap between the fact of planning and controlling process of production at the State Company for Electric Industries and implementation of material requirements planning system in fuzzy environment. Developing solutions to bridge the gap is required to provide specific mechanisms subject to the logic of fuzzy rules that will keep pace with demand for increased accuracy and reduced waiting times depending on demand forecast, investment in inventory to reduce costs to a minimum.
The proposed solutions for overcoming the research problem has required some questions reflecting the problem with its multiple dimensions, which ar
... Show MoreAn agricultural waste (walnut shell) was undertaken to remove Cu(II) from aqueous solutions in batch and continuous fluidized bed processes. Walnut shell was found to be effective in batch reaching 75.55% at 20 and 200 rpm, when pH of the solution adjusted to 7. The equilibrium was achieved after 6 h of contacting time. The maximum uptake was 11.94mg/g. The isotherm models indicated that the highest determination coefficient belongs to Langmuir model. Cu (II) uptake process in kinetic rate model followed the pseudo-second-order with determination coefficient of 0.9972. More than 95% of the Cu(II) were adsorbed on the walnut shells within 6 h at optimum agitation speed of 800 rpm. The main functional groups responsible for biosorption of
... Show MoreSince the introduction of the HTTP/3, research has focused on evaluating its influences on the existing adaptive streaming over HTTP (HAS). Among these research, due to irrelevant transport protocols, the cross-protocol unfairness between the HAS over HTTP/3 (HAS/3) and HAS over HTTP/2 (HAS/2) has caught considerable attention. It has been found that the HAS/3 clients tend to request higher bitrates than the HAS/2 clients because the transport QUIC obtains higher bandwidth for its HAS/3 clients than the TCP for its HAS/2 clients. As the problem originates from the transport layer, it is likely that the server-based unfairness solutions can help the clients overcome such a problem. Therefore, in this paper, an experimental study of the se
... Show MoreThis paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced syste