Alzheimer’s disease (AD) is a progressive disorder that affects cognitive brain functions and starts many years before its clinical manifestations. A biomarker that provides a quantitative measure of changes in the brain due to AD in the early stages would be useful for early diagnosis of AD, but this would involve dealing with large numbers of people because up to 50% of dementia sufferers do not receive formal diagnosis. Thus, there is a need for accurate, low-cost, and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, electroencephalogram (EEG) based biomarkers can play a vital role in early diagnosis of AD as they can fulfill these needs. This is a cross-sectional study that aims to demonstrate the usefulness of EEG complexity measures in early AD diagnosis. We have focused on the three complexity methods which have shown the greatest promise in the detection of AD, Tsallis entropy (TsEn), Higuchi Fractal Dimension (HFD), and Lempel-Ziv complexity (LZC) methods. Unlike previous approaches, in this study, the complexity measures are derived from EEG frequency bands (instead of the entire EEG) as EEG activities have significant association with AD and this has led to enhanced performance. The results show that AD patients have significantly lower TsEn, HFD, and LZC values for specific EEG frequency bands and for specific EEG channels and that this information can be used to detect AD with a sensitivity and specificity of more than 90%.
Microalgae have been used widely in bioremediation processes to degrade or adsorb toxic dyes. Here, we evaluated the decolorization efficiency of Chlorella vulgaris and Nostoc paludosum against two toxic dyes, crystal violet (CV) and malachite green (MG). Furthermore, the effect of CV and MG dyes on the metabolic profiling of the studied algae has been investigated. The data showed that C. vulgaris was most efficient in decolorization of CV and MG: the highest percentage of decolorization was 93.55% in case of MG, while CV decolorization percentage was 62.98%. N. paludosum decolorized MG dye by 77.6%, and the decolorization percentage of CV was 35.1%. Metabolic profiling of
... Show MoreBackground: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder globally. The prevalence is 25% worldwide, distributed widely in different populations and regions. The highest rates are reported for the Middle East (32%). Due to modern lifestyles and diet, there has been a persistent increase in the number of NAFLD patients. This increase occurred at the same time where there were also increases in the number of people considered being obese all over the world. By analyzing fatty liver risk factors, studies found that body mass index, one of the most classical epidemiological indexes assessing obesity, was associated with the risk of fatty liver. Objectives: To assess age, sex, and body mass index (BMI) as
... Show MoreIn this paper, a mathematical model is proposed and studied to describe the spread of shigellosis disease in the population community. We consider it divided into four classes namely: the 1st class consists of unaware susceptible individuals, 2nd class of infected individuals, 3rd class of aware susceptible individuals and 4th class are people carrying bacteria. The solution existence, uniqueness as well as bounded-ness are discussed for the shigellosis model proposed. Also, the stability analysis has been conducted for all possible equilibrium points. Finally the proposed model is studied numerically to prove the analytic results and discussing the effects of the external sources for dis
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
In this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show MoreBackground: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder globally. The prevalence is 25% worldwide, distributed widely in different populations and regions. The highest rates are reported for the Middle East (32%). Due to modern lifestyles and diet, there has been a persistent increase in the number of NAFLD patients. This increase occurred at the same time where there were also increases in the number of people considered being obese all over the world. By analyzing fatty liver risk factors, studies found that body mass index, one of the most classical epidemiological indexes assessing obesity, was associated with the risk of fatty liver.
Objectives: To assess age, sex, and body
... Show MoreIn recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne
... Show MoreThe climate parameters (rainfall, number of rainy days and temperature) data for about seventy years from 1941 – 2009 for three Iraqi meteorological stations (Diwaniya, Nasiriya, and Kut) were investigated and gave good evidence of climate change. As well as the climatic water balance and the climatic conditions were determined at Karbala meteorological station for the years (1982-2015). The annual precipitation for Karbala station-reflect declination from 105 mm for the period 1982-1990 to about 71 mm for the years 2011- 2015 confirms the effect of global climate change. Analyzing Karbala climate parameters reflects that the total annual rainfall is (89 mm), evaporation is (2984 mm), while the mean monthly relative humi
... Show MoreTo determine the relationship between herpes simplex virus 1, 2 and neurological disorders, sixty samples from patients with neurological diseases were collected (40 patients with Multiple sclerosis and 20 patients with Parkinson’s disease) all of whom attended both the Neurological science Hospital as well as the Neuropathology consultation Department in Baghdad Hospital In Iraq. The samples were collected in the time frame between November 2017 and April 2018. The ages of the patients that were investigated were between (17-76) years and compared to a control group consisting of 25 samples collected from apparently healthy individuals. All the studied groups were subjected to the measurement of anti-HSV 1, 2 IgG antibodies by the means
... Show More