Future generations of wireless networks are expected to heavily rely on unmanned aerial vehicles (UAVs). UAV networks have extraordinary features like high mobility, frequent topology change, tolerance to link failure, and extending the coverage area by adding external UAVs. UAV network provides several advantages for civilian, commercial, search and rescue applications. A realistic mobility model must be used to assess the dependability and effectiveness of UAV protocols and algorithms. In this research paper, the performance of the Gauss Markov (GM) and Random Waypoint (RWP) mobility models in multi-UAV networks for a search and rescue scenario is analyzed and evaluated. Additionally, the two mobility models GM and RWP are described in depth, together with the movement patterns they are related with. Furthermore, two-simulation scenarios conduct with help of an NS-3 simulator. The first scenario investigates the effect of UAV Speed by varying it from 10 to 50 m/s. the second scenario investigates the effect of the size of the transmitting packet by varying it from 64 to 1024 bytes. The performance of GM and RWP was compared based on packet delivery ratio (PDR), goodput, and latency metrics. Results indicate that the GM model provides the highest PDR and lowest latency in such high mobility environments.
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreIn this paper, a new approach was suggested to the method of Gauss Seidel through the controlling of equations installation before the beginning of the method in the traditional way. New structure of equations occur after the diagnosis of the variable that causes the fluctuation and the slow extract of the results, then eradicating this variable. This procedure leads to a higher accuracy and less number of steps than the old method. By using the this proposed method, there will be a possibility of solving many of divergent values equations which cannot be solved by the old style.
Image segmentation using bi-level thresholds works well for straightforward scenarios; however, dealing with complex images that contain multiple objects or colors presents considerable computational difficulties. Multi-level thresholding is crucial for these situations, but it also introduces a challenging optimization problem. This paper presents an improved Reptile Search Algorithm (RSA) that includes a Gbest operator to enhance its performance. The proposed method determines optimal threshold values for both grayscale and color images, utilizing entropy-based objective functions derived from the Otsu and Kapur techniques. Experiments were carried out on 16 benchmark images, which inclu