Background: The ideal maxillofacial prosthesis should have fine and thin boundaries that bindwith the surrounding facial structures and possess high tear strength.This study aims to determinethe best percentages of nanofiller (TiO2) and intrinsic pigment (silicone functional intrinsic) thatcould be mixed in as additives to improve the tear strength of Cosmesil M511 andVST50F siliconeelastomers with the least effect on their hardness.Materials and Methods: In this in vitro experimental study, a total of 80 samples, 40 for eachelastomer, were fabricated. Each elastomer sample was split into two equal groups to test for tearstrength and Shore A hardness. Each group consisted of 20 samples, including 10 control sampleswithout additives and 10 experimental samples with additives (mixtures of 0.2 wt% nano‑TiO2 + 0.25wt% intrinsic pigment and 0.25 wt% nano‑TiO2 + 0.25 wt% intrinsic pigment for the CosmesilM511 and VST50F silicone elastomers, respectively).Two‑way ANOVA and Tukey test were usedfor comparison; P < 0.05 was considered statistically significant.Results: Significant differences in tear strength were found among all tested groups (P < 0.05).The tear strength of the experimental subgroups significantly increased compared with the controlsubgroups (P < 0.05). Significant differences in Shore A hardness were also observed among alltested groups (P < 0.05) except between the experimental subgroups of both materials, where anonsignificant difference was obtained (P > 0.05).Conclusion: Incorporation of select percentages of TiO2 nanofiller and intrinsic pigment intoCosmesil M511 andVST50F silicone elastomers yields improvements in tear strength with a slightincrease in hardness (PDF) Impact of a mixture of nanofiller and intrinsic pigment on tear strength and hardness of two types of maxillofacial silicone elastomers. Available from: https://www.researchgate.net/publication/343647971_Impact_of_a_mixture_of_nanofiller_and_intrinsic_pigment_on_tear_strength_and_hardness_of_two_types_of_maxillofacial_silicone_elastomers [accessed Apr 05 2023].
INTRODUCTION: A range of tools and technologies are at disposal for the purpose of defect detection. These include but are not limited to sensors, Statistical Process Control (SPC) software, Artificial Intelligence (AI) and machine learning (ML) algorithms, X-ray systems, ultrasound systems, and eddy current systems. OBJECTIVES: The determination of the suitable instrument or combination of instruments is contingent upon the precise production procedure and the category of flaw being identified. In certain cases, defects may necessitate real-time monitoring and analysis through the use of sensors and SPC software, whereas more comprehensive analysis may be required for other defects through the utilization of X-ray or ultrasound sy
... Show MoreAshShinnafiyah and AsSamawa cities suffer from significant increase in salinity of Euphrates River water compared with their counterpart's north AshShinnafiyah city which is reflected adversely on the quality of water within the study area. The study aims to find possible solutions to avoid the deterioration of Euphrates River northern AshShinnafiyah city until AsSamawa city that were
presented by total dissolved solid TDS. Twelve main hydrological and fifteen salinity measurement stations were selected to cover 117 km of the river reach within the study area during July-2011. Additional twenty three hydrological and salinity stations were adopted during March-2012, winter season to the river within the study area. After conducting t
Shifting Sand of English in Iraq language Policy and Planning
The present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members
Simple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride (TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 μg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in its commercial formulations.
This paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosi
... Show MoreEntropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger). Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Final
... Show MoreIn this research, the stopping power and range of protons in biological human soft and hard tissues (blood, brain, skeleton-cortical bone, and skin) of both child and adult are calculated at the energies ranging from 1MeV to 350 MeV. The data is collected from ICRU Report 46 and calculated the stopping power employing the Bethe formula. Moreover, the simple integration (continuous slowing down approximation) method is employed for calculating protons range at the target. Then, the stopping power and range of protons value in human tissues have been compared with the program called SRIM. Moreover, the results of the stopping power vs energy and the range vs energy have been presented graphically. Proper agreement is found between the gain
... Show More