Background: The ideal maxillofacial prosthesis should have fine and thin boundaries that bindwith the surrounding facial structures and possess high tear strength.This study aims to determinethe best percentages of nanofiller (TiO2) and intrinsic pigment (silicone functional intrinsic) thatcould be mixed in as additives to improve the tear strength of Cosmesil M511 andVST50F siliconeelastomers with the least effect on their hardness.Materials and Methods: In this in vitro experimental study, a total of 80 samples, 40 for eachelastomer, were fabricated. Each elastomer sample was split into two equal groups to test for tearstrength and Shore A hardness. Each group consisted of 20 samples, including 10 control sampleswithout additives and 10 experimental samples with additives (mixtures of 0.2 wt% nano‑TiO2 + 0.25wt% intrinsic pigment and 0.25 wt% nano‑TiO2 + 0.25 wt% intrinsic pigment for the CosmesilM511 and VST50F silicone elastomers, respectively).Two‑way ANOVA and Tukey test were usedfor comparison; P < 0.05 was considered statistically significant.Results: Significant differences in tear strength were found among all tested groups (P < 0.05).The tear strength of the experimental subgroups significantly increased compared with the controlsubgroups (P < 0.05). Significant differences in Shore A hardness were also observed among alltested groups (P < 0.05) except between the experimental subgroups of both materials, where anonsignificant difference was obtained (P > 0.05).Conclusion: Incorporation of select percentages of TiO2 nanofiller and intrinsic pigment intoCosmesil M511 andVST50F silicone elastomers yields improvements in tear strength with a slightincrease in hardness (PDF) Impact of a mixture of nanofiller and intrinsic pigment on tear strength and hardness of two types of maxillofacial silicone elastomers. Available from: https://www.researchgate.net/publication/343647971_Impact_of_a_mixture_of_nanofiller_and_intrinsic_pigment_on_tear_strength_and_hardness_of_two_types_of_maxillofacial_silicone_elastomers [accessed Apr 05 2023].
The ground state charge, neutron, proton and matter densities, the associated nuclear radii and the binding energy per nucleon of 8B, 17Ne, 23Al and 27P halo nuclei have been investigated using the Skyrme–Hartree–Fock (SHF) model with the new SKxs25 parameters. According to the calculated results, it is found that the SHF model with these Skyrme parameters provides a good description on the nuclear structure of above proton-rich halo nuclei. The elastic charge form factors of 8B and 17Ne halo nuclei and those of their stable isotopes 10B and 20Ne are calculated using plane-wave Born approximation with the charge density distributions obtained by SHF model to investigate the effect of the extended charge distributions of proton-rich nucl
... Show MoreRheumatoid arthritis (RA) is characterized by persistent joint inflammation, which is a defining feature of this chronic inflammatory condition. Considerable advancements have been made in the field of disease-modifying anti-rheumatic medicines (DMARDs), which effectively mitigate inflammation and forestall further joint deterioration. Anti-tumor necrosis factor-alpha (TNF-α) drugs, which are a class of biological DMARDs (bDMARDs), have been efficaciously employed in the treatment of RA in recent times Adalimumab, a TNF inhibitor, has demonstrated significant efficacy in reducing disease symptoms and halting disease progression in patients with RA. However, its use is associated with major side effects and high costs. In addition,
... Show MoreIn the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi
... Show MoreHydraulic fracturing is considered to be a vital cornerstone in decision making of unconventional reservoirs. With an increasing level of development of unconventional reservoirs, many questions have arisen regarding enhancing production performance of tight carbonate reservoirs, especially the evaluation of the potential for adapting multistage hydraulic fracturing technology in tight carbonate reservoirs to attain an economic revenue.
In this paper we present a feasibility study of multistage fractured horizontal well in typical tight carbonate reservoirs covering different values of permeability. We show that NPV is the suitable objective function for deciding on the optimum number
Biodiesel is an environmentally friendly fuel and a good substitution for the fossil fuel. However, the purity of this fuel is a major concern that challenges researchers. In this study, a calcium oxide based catalyst has been prepared from local waste eggshells by the calcination method and tested in production biodiesel. The eggshells were powdered and calcined at different temperatures (700, 750, 800, 850 and 900 °C) and periods of time (1, 2, 3, 4 and 5 hr.). The effect of calcination temperature and calcination time on the structure and activity of the solid catalyst were examined by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Brunaure-Emmett-Teller (BET). The optimum catalyst performance was obtained at 900 °C
... Show MoreNitrogen dioxide NO2 is one of the most dangerous contaminant in the air, its toxic gas that cause disturbing respiratory effects, most of it emitted from industrial sources especially from the stack of power plants and oil refineries. In this study Gaussian equations modelled by Matlab program to state the effect of pollutant NO2 gas on area around Durra refinery, this program also evaluate some elements such as wind and stability and its effect on stacks height. Data used in this study is the amount of fuel oil and fuel gas burn inside refinery at a year 2017. Hourly April month data chosen as a case study because it’s unsteady month. After evaluate emission rate of the all fuel and calculate exit velocity from
... Show More